Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where 'color MPI' techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.
Magnetic particle imaging (MPI) is a novel imaging modality with important potential applications, such as angiography, stem cell tracking, and cancer imaging. Recently, there have been efforts to increase the functionality of MPI via multi-color imaging methods that can distinguish the responses of different nanoparticles, or nanoparticles in different environmental conditions. The proposed techniques typically rely on extensive calibrations that capture the differences in the harmonic responses of the nanoparticles. In this paper, we propose a method to directly estimate the relaxation time constant of the nanoparticles from the MPI signal, which is then used to generate a multi-color relaxation map. The technique is based on the underlying mirror symmetry of the adiabatic MPI signal when the same region is scanned back and forth. We validate the proposed method via simulations, and via experiments on our in-house magnetic particle spectrometer setup at 10.8 kHz and our in-house MPI scanner at 9.7 kHz. Our results show that nanoparticles can be successfully distinguished with the proposed technique, without any calibration or prior knowledge about the nanoparticles.
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as a robust negative contrast agent on conventional MRI. In this study, we (a) synthesized a new class of cubic SPIONs as a dual-mode contrast agent in MRI and (b) showed the in-vivo feasibility of these nanaoparticles as a simultaneous positive and negative contrast agent. Relaxation properties and contrast enhancement analysis of the synthesized SPIONs with two different shapes (cubic vs. spherical) and three different sizes 7nm, 11nm, and 14nm were investigated to evaluate contrast enhancement in-vitro. In-vivo MRI experiments were performed on a 3T MR scanner, where a healthy anesthetized rat was imaged before, and from 20 to 80min after intravenous injection of 1mg/kg of contrast agent. Representative transmission electron microscopy (TEM) images of the synthesized nanoparticles reveal that the particles are well dispersed in a solvent and do not aggregate. The in-vitro relaxivity and contrast enhancement analysis show that, among all six SPIONs tested, 11-nm cubic SPIONs possess optimal molar relaxivities and contrast enhancement values, which can shorten the spin-lattice and spin-spin relaxation times, simultaneously. No noticeable toxicity is observed during in-vitro cytotoxicity analysis. In-vivo T-and T-weighted acquisitions at 60-min post-injection of 11-nm cubic SPIONs result in 64% and 48% contrast enhancement on the T-and T-weighted images, respectively. By controlling the shape and size of SPIONs, we have introduced a new class of cubic SPIONs as a synergistic (dual-mode) MRI contrast agent. 11-nm cubic SPIONs with smaller size and high positive and negative contrast enhancements were selected as a promising candidate for dual-mode contrast agent. Our proof-of-concept MRI experiments on rat demonstrate the in-vivo dual-mode contrast enhancement feasibility of these nanoparticles.
Magnetic particle imaging (MPI) uses superparamagnetic iron oxide (SPIO) nanoparticles as biomedical imaging tracers. The potential applications of MPI have recently been broadened by the introduction of "color" MPI techniques that can distinguish different nanoparticles and/or environments, e.g., by exploiting the relaxation behavior of SPIOs. One of the important applications of color MPI techniques is viscosity mapping. In this work, we show relaxation-based color MPI experiments that can distinguish the biologically relevant viscosity range of up to 5 mPa s. To find the optimal drive field parameters for viscosity, we compare color MPI results at three different frequencies. We show that frequencies around 10 kHz are well-suited for viscosity mapping using the multicore cluster Nanomag-MIP nanoparticles, providing a one-to-one mapping between the estimated relaxation time constant and viscosity.
Smart theranostic SPION-NIPAM produced in small sizes show high drug loading capacity and pH/temperature-sensitive release which is also influenced by PNIPAM molecular weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.