e accurate estimation of actual evapotranspiration can help improve the utilization of water resources and ease the ecological stress. Based on the generalized complementary principle proposed by Brutsaert in 2015, we used meteorological and hydrological data to estimate the actual evapotranspiration at a resolution of 1 km × 1 km between the years of 1961 and 2000 and also verified the model's stability. In this study, we used the water balance equation to calibrate the parameters, coupled with the spatial simulation results of the meteorological elements in the actual evapotranspiration model. e estimation results of actual evapotranspiration show that the generalized complementary principle model had high estimation precision in this basin, with an average absolute error of 16.64 mm and an average relative error of 2.25%. With respect to spatial distribution, the average actual evapotranspiration over the years in the basin tended to have high and low distribution in the northern and southern parts of the basin, respectively. e actual evapotranspiration in the basin showed a decreasing trend over the period, with a rate of 24.1 mm/10 years. Correlation coefficient analysis showed that the percentage decreases in percentage sunshine and the decreases in the daily range of temperature were the main reasons for the decrease in actual evapotranspiration.
Abstract-Due to the increase in the easy accessibility of computers and mobile phones alike, routing has become indispensable in deciding how computes communicate especially modern computer communication networks. This paper presents performance analysis between EIGRP and OSPFP for real time applications using Optimized Network Engineering Tool (OPNET). In order to evaluate OSPF and EIGRP's performance, three network models were designed where 1st, 2nd and 3rd network models are configured respectively with OSPF, EIGRP and a combination of EIGRP and OSPF. Evaluation of the proposed routing protocols was performed based on quantitative metrics such as Convergence Time, Jitter, End-to-End delay, Throughput and Packet Loss through the simulated network models. The evaluation results showed that EIGRP protocol provides a better performance than OSPF routing protocol for real time applications. By examining the results (convergence times in particular), the results of simulating the various scenarios identified the routing protocol with the best performance for a large, realistic and scalable network.
Flooding is a serious, common, and costly hazard that many countries face regularly, therefore a global concern. Vulnerability to flood hazards is likely to increase unless effective flood mitigation and management activities are implemented. Flooding is one of the most common environmental issues in the southern and the eastern part of Nigeria alongside with deforestation and erosion. There is need to have information on flood risk and basis for priority setting on political decision on risk mitigation and management of fadama farmers in the study area and since there is lack of information on these, hence the study. The study mapped out fadama areas in the study area (Ife East and Ife Central), identified areas susceptible to flooding, studied the effect of flooding on fadama production in terms of economic and social implication and examined the mitigating efforts of farmers. Eleven Fadama points were mapped out and almost all are in the low elevation (3.5–7.1% slope) which made them prone to/or at risk of flooding during high peak of rainy season. Majority of the fadama farmers have a means of militating against flood by dredging the water ways but no government intervention has been done to assist them. All Fadama farmers are literate, therefore any assistance by the government would be embraced and not misunderstood.
In this paper, we propose a remote sensing model based on a 1 × 1 km spatial resolution to estimate the spatio-temporal distribution of sunshine percentage (SSP) and sunshine duration (SD), taking into account terrain features and atmospheric factors. To account for the influence of topography and atmospheric conditions in the model, a digital elevation model (DEM) and cloud products from the moderate-resolution imaging spectroradiometer (MODIS) for 2010 were incorporated into the model and subsequently validated against in situ observation data. The annual and monthly average daily total SSP and SD have been estimated based on the proposed model. The error analysis results indicate that the proposed modelled SD is in good agreement with ground-based observations. The model performance is evaluated against two classical interpolation techniques (kriging and inverse distance weighting (IDW)) based on the mean absolute error (MAE), the mean relative error (MRE) and the root-mean-square error (RMSE). The results reveal that the SD obtained from the proposed model performs better than those obtained from the two classical interpolators. This results indicate that the proposed model can reliably reflect the contribution of terrain and cloud cover in SD estimation in Ghana, and the model performance is expected to perform well in similar environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.