Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines. Speech Emotion Recognition (SER) is one of the critical sources for human evaluation, which is applicable in many real-world applications such as healthcare, call centers, robotics, safety, and virtual reality. This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker's emotional state. The authors designed a Temporal Convolutional Network (TCN) core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network to fuse the spatial features and recognize global information for final classification. The proposed network extracts valid sequential cues automatically from speech signals, which performed better than state-of-the-art (SOTA) and traditional machine learning algorithms. Results of the proposed method show a high recognition rate compared with SOTA methods. The final unweighted accuracy of 80.84%, and 92.31%, for interactive emotional dyadic motion captures (IEMOCAP) and berlin emotional dataset (EMO-DB), indicate the robustness and efficiency of the designed model.
The method for document image classification presented in this paper mainly focuses on six different Malayalam palm leaf manuscripts categories. The proposed approach consists of three phases: dataset analysis, building a bag of words repository followed by recognition and classification using a voting approach. The palm leaf manuscripts are initially subject to pre-processing and subjective analysis techniques to create a bag of words repository during the dataset analysis phase. Next, the textual components from the manuscripts are extracted for recognition using Tesseract 4 OCR with default and self-adapted training sets and a deep-learning algorithm. The Bag of Words approach is used in the third phase to categorize the palm leaf manuscripts based on textual components recognized by OCR using a voting process. Experimental analysis was done to analyze the proposed approach with and without the voting techniques, varying the size of the Bag of Words with default/self-adapted training datasets using Tesseract OCR and a deep learning model. Experimental analysis proves that the proposed approach works equally well with/ without voting with a bag of words technique using Tesseract OCR. It is noticed that, for document classification, an overall accuracy of 83% without voting and 84.5% with voting is achieved with an F-score of 0.90 in both cases using Teserract OCR. Overall, the proposed approach proves to be high generalizable based on trial wise experiments with Bag of Words, offering a reliable way for classifying deteriorated Malayalam handwritten palm manuscripts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.