Combination of Synthetic Minority Oversampling Technique (SMOTE) and Backpropagation Neural Network to handle imbalanced class in predicting the use of contraceptive implants Kegagalan akibat pemakaian alat kontrasepsi implan merupakan terjadinya kehamilan pada wanita saat menggunakan alat kontrasepsi secara benar. Kegagalan pemakaian kontrasepsi implan tahun 2018 secara nasional sejumlah 1.852 pengguna atau 4% dari 41.947 pengguna. Rasio angka kegagalan dan keberhasilan pemakaian kontrasepsi implan yang cenderung tidak seimbang (imbalance class) membuatnya sulit diprediksi. Ketidakseimbangan data terjadi jika jumlah data suatu kelas lebih banyak dari data lain. Kelas mayor merupakan jumlah data yang lebih banyak, sedangkan kelas minor jumlahnya lebih sedikit. Algoritma klasifikasi akan mengalami penurunan performa jika menghadapi kelas yang tidak seimbang. Synthetic Minority Oversampling Technique (SMOTE) digunakan untuk menyeimbangkan data kegagalan pemakaian kontrasepsi implan. SMOTE menghasilkan akurasi yang baik dan efektif daripada metode oversampling lainnya dalam menangani imbalance class karena mengurangi overfitting. Data yang sudah seimbang kemudian diprediksi dengan Neural Network Backpropagation. Sistem prediksi ini digunakan untuk mendeteksi apakah seorang wanita mengalami kehamilan atau tidak jika menggunakan kontrasepsi implan. Penelitian ini menggunakan 300 data, terdiri dari 285 data mayor (tidak hamil) dan 15 data minor (hamil). Dari 300 data dibagi menjadi dua bagian, 270 data latih dan 30 data uji. Dari 270 data latih, terdapat 13 data latih minor dan 257 data latih mayor. Data latih minor pada data latih diduplikasi sebanyak data pada kelas mayor sehingga jumlah data latih menjadi 514, terdiri dari 257 data mayor, 13 data minor asli, dan 244 data minor buatan. Sistem prediksi menghasilkan nilai akurasi sebesar 96,1% pada epoch ke-500 dan 1.000. Implementasi kombinasi SMOTE dan Neural Network Backpropagation terbukti mampu memprediksi pada imbalance class dengan hasil prediksi yang baik. The failed contraceptive implant is one of the sources of unintended pregnancy in women. The number of users experiencing contraceptive-implant failure in 2018 was 1,852 nationally or 4% out of 41,947 users. The ratio between failure and success rates of contraceptive implant, which tended to be unbalanced (imbalance class), made it difficult to predict. Imbalance class will occur if the amount of data in one class is bigger than that in other classes. Major classes represent a bigger amount of data, while minor classes are smaller ones. The imbalance class will decrease the performance of the classification algorithm. The Synthetic Minority Oversampling Technique (SMOTE) was used to balance the data of the contraceptive implant failures. SMOTE resulted in better and more effective accuracy than other oversampling methods in handling the imbalance class because it reduced overfitting. The balanced data were then predicted using backpropagation neural networks. The prediction system was used to detect if a woman using a contraceptive implant was pregnant or not. This study used 300 data, consisting of 285 major data (not pregnant) and 15 minor data (pregnant). Of 300 data, two groups of data were formed: 270 training data and 30 testing data. Of 270 training data, 13 were minor training data and 257 were major training data. The minor training data in the training data were duplicated as much as the number of data in major classes so that the total training data became 514, consisting of 257 major data, 13 original minor data, and 244 artificial minor data. The prediction system resulted in an accuracy of 96.1% on the 500th and 1,000th epochs. The combination of SMOTE and Backpropagation Neural Network was proven to be able to make a good prediction result in imbalance class.
Telah dibuat Dye-Sensitized Solar Cell (DSSC) menggunakan dye alami ekstrak bunga Rosela dan elektrolit padat berbasis PEG yang mengandung pasangan redoks I-/I3-. Dye-Sensitized Solar Cell dikonstruksi dengan struktur sandwich menggunakan fotoelektrode TiO2 yang dideposisi pada kaca Transparent Conductive Oxide (TCO) dengan elektrode lawan grafit. Dye ekstrak bunga rosela dimaserasi dalam campuran metanol, asam asetat dan air selama 24 jam dan digunakan untuk perendaman fotoelektroda TiO2 selama 1 jam dan 24 jam. Dye dikarakterisasi menggunakan FT-IR dan UV-Vis dan TiO2 menggunakan X-RD dan SEM. Kinerja sel surya diuji di bawah sinar matahari selama 1 jam pada jam 12:15-13:15 dengan suhu atmosfir 39°C. Spektra UV-Vis dan FT-IR larutan dye menunjukkan adanya kandungan antosianin pada panjang gelombang maksimum 530 nm dan diperkuat dengan munculnya gugus hidroksil, benzena dan karbonil pada serapan inframerah. Hasil karakterisasi XRD dan SEM menunjukkan TiO2 memiliki fase kristalin anatase dengan ukuran kristal sebesar 41,56 nm dan morfologi permukaan dengan ukuran rongga sekitar 94,11nm dan ketebalan penampang lintang sekitar 39,05. Dye-Sensitized Solar Cell yang dibuat menghasilkan potensial rangkaian terbuka (VOC) sebesar 0,124 V dan 0,127 V , arus rangkaian pendek (ISC) 0,084 mA dan 1,275 mA, serta efisiensi 0,00098 % dan 0,01883 % masing-masing untuk perendaman fotoelektroda TiO2 1 jam dan 24 jam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.