A very efficient, highly atom economical, and environmentally benign oxidation of primary and secondary amines using an in situ catalyst system generated from commercially available ruthenium(II) benzene dichloride dimer and hexamethylenetetramine has been demonstrated. Mechanistic studies revealed that hexamethylenetetramine acted as a source of hydride to generate the active ruthenium hydride catalyst and amine oxidation involves a dehydrogenative pathway. In comparison to reported catalyst systems for the dehydrogenative oxidation of amines, this synthetic protocol makes use of a simple ruthenium precursor and a cheaper additive; it is very selective, leading to the exclusive formation of nitrile/imine compounds. Further, it releases hydrogen as the only side product, suggesting the potential application of the developed catalyst system in hydrogen storage.
Acceptorless dehydrogenative oxidation of primary amines into nitriles using an in situ complex derived from commercially available dichloro(1,5-cyclooctadiene) ruthenium(II) complex and simple hexamethylenetetramine has been demonstrated. The synthetic protocol is highly selective and yields the nitrile compounds in moderate to excellent yields and produces hydrogen as the sole byproduct.
Ruthenium-catalyzed formation of lactones from diols in aqueous medium has been demonstrated. 1,3,5-Triazaphosphaadamantane (PTA) included water-soluble ruthenium complexes [RuCl2(PPh3)(2,6-Py-(CH2-PTA)2]·2Br and [RuCl2(PPh3)2(2-PyCH2PTA)]·Br in the presence of KOH were found to be efficient for the synthesis of lactones from diols. The reported synthetic protocol is green as it uses water as solvent, avoids the use of any hydrogen acceptor/oxidant, and produces hydrogen as the only side product. Mechanistic studies revealed that lactone formation involved aldehyde intermediate and followed dehydrogenative pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.