Although sphingomyelins known to be are lipid constituents of the plasma membrane in vertebrates, much remains obscure about the metabolism of sphingomyelins in insects. With ultra performance liquid chromatography‐time‐of‐flight‐tandem mass spectrometry analysis, we revealed for the first time that sphingomyelins are abundant in Nilaparvata lugens (Stål), the brown planthopper (BPH), and their biosynthesis is carried out by sphingomyelin synthase‐like protein 2 (SMSL2), which is homologous to sphingomyelin synthase‐related protein (SMSr). Unlike other insect species, high concentrations of sphingomyelins rather than ceramide phosphoethanolamines exist in the BPH. Two putative genes, which are homologous to SMSr, are named Nilaparvata lugens SMS‐like 1 (NlSMSL1) and 2 (NlSMSL2). Knockdowns of both NlSMSL2 and NlSMSL1 were conducted but only the first decreased concentrations of sphingomyelins in the BPH, indicating that NlSMSL2 plays a role in the biosynthesis of sphingomyelins. Real‐time quantitative PCR analysis revealed both NlSMSL1 and NlSMSL2 are highly expressed in BPH adults, with NlSMSL1 specifically highly expressed in reproductive organs (ovaries and testes) whereas NlSMSL2 was highly expressed in the malpighian tubules. The knockdown of NlSMSL1 or NlSMSL2 increased BPH female body weight but not that of males, suggesting sex‐specific roles for SMSLs in influencing BPH body weight. The results suggest that NlSMSL2 catalyses the synthesis of sphingomyelins and maintains female BPH body weight through alteration of sphingolipid content.
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we found that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.