Vegetable production is a source of income for smallholder farmers in Limpopo Province, South Africa. Vegetable production is constrained by the negative impacts of climate change and pests. This study assessed farmers’ awareness of climate change, farmers’ knowledge of insect pests and factors that influence insect pests’ prevalence. The data were collected using quantitative and qualitative methods. The data were subjected to descriptive and bivariate analysis. About 84.5% of smallholder farmers were aware of climate change. Late rainfall (24.4%), long dry spells (15%) and increased drought frequency (19.4%) were highlighted as dominant indicators of climate change by farmers. Aphids (22.2%), Bagrada hilaris (12.5%) and Spodoptera frugiperda (10.2%) were the most prevalent insect pests within the Vhembe District. Warmer winters, dry spells and high temperatures were perceived by farmers to influence insect pests’ prevalence within the district. It can be concluded that farmers are aware of climate change and climatic factors influencing pest prevalence within the district. Pest risk maps are needed to improve the preparedness of the government and farmers in controlling insect pests under changing climates.
<p>Improved fallows of <em>Sesbania sesban</em> (Sesbania) have been known to improve soil physical and chemical properties and increase crop yield compared to traditional fallows. However, the effects of soil tillage practices after improved fallows on soil properties, weeds, labour and subsequent maize crop have not been assessed in Southern Africa. This study aimed to evaluate how tillage practices affect yield of maize and affect soil properties after two years of fallow and subsequent cropping phase. In this study, done at sites in eastern Zambia, maize yield from a two-year planted Sesbania, natural fallow, continuously fertilized and unfertilized maize were compared under conventional, flat till and zero tillage practices. A split plot experiment, with improved fallow systems in the main plot and the tillage practice in the subplot, was established at the sites. The results showed that the increases in grain yield under conventional tillage over zero tillage practice were 17.8% and 28.2% during 2000/2001 and 2001/2002 seasons, respectively, at Msekera. At Chadiza, the increases in grain yield under conventional tillage over zero tillage were 66.3% and 327.4% during 2000/2001 and 2001/2002 seasons, respectively. Greater maize yields were achieved under Sesbania planted fallows compared to the natural fallow and maize monoculture without fertilizer. Overall, zero tillage practice resulted in lower maize grain yield, higher bulk density, reduced water intake, higher weed infestation and high labour demand during weeding compared to conventional tillage.</p>
The use of herbicides amongst smallholder farmers is minimal because herbicides are expensive and they require specialized application equipments. Weeds are problematic in conservation agriculture where herbicides are expensive for smallholder farmers. The use of cover crops can help to suppress weed growth and development by creating an environment which is not suitable for weeds survival. Cowpea (Vigna unguiculata (L.) Walp) dolichos lablab (Lablab purpureus L.) and velvet bean (Mucuna pruriens (L.) DC) were evaluated for biomass accumulation and weed suppression under conservation agriculture system in two contrasting experimental sites: Ukulinga and Bergville in KwaZulu-Natal. Bare plot and herbicide treatments served as controls. Treatments were laid in a randomized complete block design, replicated three times. Mucuna pruriens (L.) DC had the highest biomass accumulation in both sites Bergville (0.72 t/ha) and Ukulinga (1.59 t/ha). Cowpea had the lowest biomass accumulation in Bergville (0.59 t/ha) and lablab was the lowest in Ukulinga (0.88 t/ha). Lablab was effective in suppressing weed biomass in Bergville (P < 0.05). Cowpea performed best in suppressing weed biomass in Ukulinga (P < 0.05). The results suggest that cowpea and lablab can be effective for weed suppression and therefore can be recommended for use in conservation agricultural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.