The high-resolution devices for image capturing and the high professional requirement for users, are very complex to extract features of the fruit fly image for classification. Therefore, a bilinear CNN model based on the mid-level and high-level feature fusion (FB-CNN) is proposed for classifying the fruit fly image. At the first step, the images of fruit fly are blurred by the Gaussian algorithm, and then the features of the fruit fly images are extracted automatically by using CNN. Afterward, the mid-and high-level features are selected to represent the local and global features, respectively. Then, they are jointly represented. When finished, the FB-CNN model was constructed to complete the task of image classification of the fruit fly. Finally, experiments data show that the FB-CNN model can effectively classify four kinds of fruit fly images. The accuracy, precision, recall, and F1 score in testing dataset are 95.00%, respectively. INDEX TERMS Fruit fly images, feature fusion, convolution neural network, image classification.
Cyber-Physical-Social Systems (CPSS) integrates cyber, physical and social spaces together, which makes our lives more convenient and intelligent by providing personalized service. In this paper, we will provide CPSS service for fine-grained recognition. Fine-grained visual recognition is a hot but challenging research in computer vision that aims to recognize object subcategories. The reason why it is challenging is that it extremely depends on the subtle discriminative features of local parts. Recently, some bilinear feature based methods were proposed, and the experimental results show state-of-the-art performance. However, most of them neglect the spatial relationships of part-region feature among multiple layers. In this paper, a novel approach of Self-layer and Cross-layer Bilinear Aggregation(SCBA) is proposed for fine-grained recognition. Firstly, a self-layer bilinear feature fusion module is proposed to model the spatial relationship of feature at the same layer. Secondly, we propose a cross-layer bilinear feature fusion module to capture the inter-layer interreaction of information to boost the ability of feature representation. In summary, the method we proposed not only can learn the correlations among different layers but the same layer, which makes it efficient and the experimental results show that it achieves state-of-the-art accuracy on three common fine-grained image datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.