This work addresses the problem of 6-DoF pose estimation under heavy occlusion. While previous work demonstrates reasonable results in unoccluded situations, robust and efficient pose estimation is still challenging in heavily occluded and low-texture scenarios which are ubiquitous in many applications. To this end, we propose a novel end-toend deep neural network model recovering object poses from depth measurements. The proposed model enforces pairwise consistency of 3D geometric features by applying spectral convolutions on a pairwise compatibility graph. We achieve comparable accuracy as the state-of-the-art graph matching solver while being much faster. Our approach outperforms state-of-the-art 6-DoF pose estimation methods on LineMOD and Occlusion LineMOD and runs in reasonable time (∼5.9 Hz). We additionally verify this method on a synthetic dataset with large affine changes.
Hypothesis pruning is an important prerequisite while working with outlier-contaminated data in many computer vision problems. However, the underlying random data structures are barely explored in the literature, limiting designing efficient algorithms. To this end, we provide a novel graph-theoretic perspective on hypothesis pruning exploiting invariant structures of data. We introduce the planted clique model, a central object in computational statistics, to investigate the information-theoretical and computational limits of the hypothesis pruning problem.In addition, we propose an inductive learning framework for finding hidden cliques that learns heuristics on synthetic graphs with planted cliques and generalizes to real vision problems. We present competitive experimental results with large runtime improvement on synthetic and widely used vision datasets to show its efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.