BackgroundTransplant renal artery stenosis (TRAS) is a common vascular complication after kidney transplantation and is associated with refractory hypertension, volume overload, and graft injury or loss. This article describes 5-year outcomes of endovascular intervention for TRAS with bare metal and drug eluting stents (DES).MethodsWe investigated, as a prospective cohort study, patient and graft outcomes after the targeted use of DES for vessel diameter less than 5 mm and bare metal stents (BMS) for vessel diameter greater than 5 mm as the primary management for TRAS.ResultsFrom March 2008 to November 2014, 57 patients were stented for hemodynamically significant TRAS; 29 received DES, 26 received BMS, and 2 patients received both stent types. They were followed up for a mean of 35.1 ± 22.8 months; a subset of these patients who all received DES were followed up for 61.7 ± 17.5 months. Mean serum creatinine declined from 2.87 ± 1.5 mg/dL at the time of intervention to 1.98 ± 0.76 mg/dL (P < 0.001) at one month follow-up and was 1.96 ±0.92 mg/dL (P < 0.001) at 35.1 ± 22.8 months. Mean systolic blood pressure declined from 159.05 ± 19.68 mm Hg at time of intervention to 135.65 ± 15.10 mm Hg (P < 0.001) at most recent visit. Clinically driven restenosis requiring repeat revascularization occurred in 15.7% of patients.ConclusionsPrimary stenting with DES and BMS is both successful in the initial treatment of TRAS and also produced an immediate and long-term reduction in serum creatinine and systolic blood pressure.
BackgroundOpen cardiovascular magnetic resonance (CMR) scanners offer the potential for imaging patients with claustrophobia or large body size, but at a lower 1.0 Tesla magnetic field. This study aimed to evaluate the efficacy of open CMR for evaluation of pediatric and congenital heart disease.MethodsThis retrospective, cross-sectional study included all patients ≤18 years old or with congenital heart disease who underwent CMR on an open 1.0 Tesla scanner at two centers from 2012–2014. Indications for CMR and clinical questions were extracted from the medical record. Studies were qualitatively graded for image quality and diagnostic utility. In a subset of 25 patients, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were compared to size- and diagnosis-matched patients with CMR on a 1.5 Tesla scanner.ResultsA total of 65 patients (median 17.3 years old, 60% male) were included. Congenital heart disease was present in 32 (50%), with tetralogy of Fallot and bicuspid aortic valve the most common diagnoses. Open CMR was used due to scheduling/equipment issues in 51 (80%), claustrophobia in 7 (11%), and patient size in 3 (5%); 4 patients with claustrophobia had failed CMR on a different scanner, but completed the study on open CMR without sedation. All patients had good or excellent image quality on black blood, phase contrast, magnetic resonance angiography, and late gadolinium enhancement imaging. There was below average image quality in 3/63 (5%) patients with cine images, and 4/15 (27%) patients with coronary artery imaging. SNR and CNR were decreased in cine and magnetic resonance angiography images compared to 1.5 Tesla. The clinical question was answered adequately in all but 2 patients; 1 patient with a Fontan had artifact from an embolization coil limiting RV volume analysis, and in 1 patient the right coronary artery origin was not well seen.ConclusionsOpen 1.0 Tesla scanners can effectively evaluate pediatric and congenital heart disease, including patients with claustrophobia and larger body size. Despite minor artifacts and differences in SNR and CNR, the majority of clinical questions can be answered adequately, with some limitations with coronary artery imaging. Further evaluation is necessary to optimize protocols and image quality.
Cardiovascular magnetic resonance (CMR) imaging in adults is considered the gold standard for assessment of left ventricular mass (LVM) and left ventricular hypertrophy (LVH). The authors aimed to evaluate agreement of LVM measurements and LVH determination between echocardiography (ECHO) and CMR imaging in children with hypertension (HTN) confirmed by 24‐hour ambulatory blood pressure monitoring (ABPM). The children (n=22) underwent contemporaneous ECHO, CMR imaging, and ABPM. Patients had a mean body mass index of 30.9±7.5 (kg/m2), and 81.8% had severe HTN. LVM measured by ECHO was 189.6±62.1 g and by CMR imaging was 164.6±44.7 g (P<.0001). Bland‐Altman analysis revealed significant variability between ECHO and CMR imaging in the measurement of LVM. Interobserver error was higher with ECHO than with CMR imaging. ECHO had high sensitivity and low specificity in LVH determination. In conclusion, ECHO overestimates LVM and is less accurate in measuring LVM as compared with CMR imaging in children with HTN. Further prospective study using CMR imaging to assess LVM in children is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.