Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay's specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas.
Bovine tuberculosis (bTB) is a neglected disease that affects cattle and humans. The burden of bTB is higher in developing countries as compared to industrialized countries. The reasons behind this discrepancy include the fact that bTB control measures, such as testing and slaughter of infected cattle and pasteurization of milk, are not usually practised in developing countries largely because of their high cost. To improve our understanding of bTB in developing countries, molecular typing studies are essential, in particular in terms of transmission dynamics, infection sources and knowledge of circulating strains of the principal causative agent, Mycobacterium bovis. In this study, we applied a suite of molecular typing techniques encompassing deletion analysis, spoligotyping and MIRU‐VNTR to isolates recovered from samples collected during the routine post‐mortem of cattle at the cold storage abattoir in Lilongwe, Malawi. Out of 63 isolates, 51 (81%) belonged to the European 1. M. bovis clonal complex. Spoligotyping identified 8 profiles, with SB0131 being the predominant type (56% of isolates). Spoligotypes SB0273 and SB0425 were identified in 14% and 13%, respectively, of the isolates. MIRU‐VNTR showed a high discriminatory power of 0.959 and differentiated the 8 spoligotypes to 31 genotypes. The high diversity of M. bovis within the study area suggests the infection has been circulating in the area for a considerable period of time, likely facilitated by the lack of effective control measures. We also observed genetic similarities between isolates from Malawi (this study) to isolates described in previous studies in Zambia and Mozambique, suggesting transmission links in this region. The information provided by this study provides much needed evidence for the formulation of improved bTB control strategies.
Without the proper information on pyrazinamide (PZA) susceptibility of Mycobacterium tuberculosis (MTB), PZA is inappropriately recommended for the treatment of both susceptible and multidrug-resistant tuberculosis (MDR-TB) in Nepal. This study aimed to collect information regarding PZA susceptibility in MTB isolates from Nepal by analyzing pncA and its upstream regulatory region (URR). A total of 211 MTB isolates were included in this study. Sequence analysis of pncA and its URR was performed to assess PZA resistance. First-line drug susceptibility testing, spoligotyping, and sequence analysis of rpoB, katG, the inhA regulatory region, gyrA, gyrB, and rrs were performed to assess their association with pncA mutation. Sequencing results reveal that 125 (59.2%) isolates harbored alterations in pncA and its URR. A total of 57 different mutation types (46 reported and 11 novel) were scattered throughout the whole length of the pncA gene. Eighty-seven isolates (41.2%) harbored mutations in pncA, causing PZA resistance in MTB. There was a more significant association of pncA alterations in MDR/pre-extensively drug-resistant (Pre-XDR) TB than in mono-resistant/pan-susceptible TB (p < 0.005). This first report on the increasing level of PZA resistance in DR-TB in Nepal highlights the importance of PZA susceptibility testing before DR-TB treatment.
The emergence of fluoroquinolone (FQ) resistance has further compounded the control of emerging
Mycobacterium avium
-associated nontuberculous mycobacteria infections worldwide. For
M. avium
, the association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of
gyrA
is not yet clearly understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.