Cistus genus (Cistaceae) comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS) and Cistus monspeliensis L. (CM), still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α-amylase and α-glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α-amylase and α-glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α-glucosidase (IC50: 0.95 ± 0.14 to 14.58 ± 1.26 μg/mL) and significant inhibitory potential against α-amylase (IC50: 217.10 ± 0.15 to 886.10 ± 0.10 μg/mL). Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.
Diabetes is a chronic condition which is increasingly progressing throughout the world. To treat it, several methods are used, among which is medicinal plants that still have an unknown mechanism of action. The objective of this work is to evaluate the in vitro hypoglycemic effect of the extracts of the underground part of Atractylis gummifera, a member of Asteraceae used in traditional Moroccan medicine. A phytochemical study of the aqueous extracts (decocted, infused and macerated) and organic extracts (methanol, methanol macerate, chloroformic, ethyl acetate and petroleum ether), and a phytochemical screening of the different secondary metabolites was done. The antidiabetic power of the extracts of A. gummifera by testing the inhibitory activity of α-amylase, α-glucosidase and β-galactosidase, which are enzymes responsible for the digestion of polysaccharides was determined. The extracts of A. gummifera are very rich in flavonoids and tannins, and are inhibitory toα-amylase and α-glucosidase, mainly the macerate of methanol with IC50 values of 0.557 ± 0.013 and 0.743 ± 0.017 mg / mL respectively. Higher β-galactosidase inhibitory potential than quercetin was observed for aqueous macerates and methanol with IC50 values of 2.23 ± 0.012 and 2.443 ± 0.071 mg / mL respectively. The extracts of A. gummifera possess a significant inhibitory activity of the alpha amylase and alpha glucosidase and beta-galactosidase enzymes, in particular the macerate of methanol followed by the aqueous macerate, among the eight extracts tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.