Asymptomatic infection is an important obstacle for controlling disease in countries where malaria is endemic. Because asymptomatic carriers do not seek treatment for their infections, they can have high levels of gametocytes and constitute a reservoir available for new infection. We employed a sample pooling/PCR-based molecular detection strategy for screening malaria infection in residents from areas of Myanmar where malaria is endemic. Blood samples (n ؍ 1,552) were collected from residents in three areas of malaria endemicity (Kayin State, Bago, and Tanintharyi regions) of Myanmar. Two nested PCR and real-time PCR assays showed that asymptomatic infection was detected in about 1.0% to 9.4% of residents from the surveyed areas. The sensitivities of the two nested PCR and real-time PCR techniques were higher than that of microscopy examination (sensitivity, 100% versus 26.4%; kappa values, 0.2 to 0.5). Among the three regions, parasite-positive samples were highly detected in subjects from the Bago and Tanintharyi regions. Active surveillance of residents from regions of intense malaria transmission would reduce the risk of morbidity and mitigate transmission to the population in these areas of endemicity. Our data demonstrate that PCRbased molecular techniques are more efficient than microscopy for nationwide surveillance of malaria in countries where malaria is endemic.
The emergence and spread of drug resistance is a problem hindering malaria elimination in Southeast Asia. In this study, genetic variations in drug resistance markers of Plasmodium falciparum were determined in parasites from asymptomatic populations located in three geographically dispersed townships of Myanmar by PCR and sequencing. Mutations in dihydrofolate reductase (pfdhfr), dihydropteroate synthase (pfdhps), chloroquine resistance transporter (pfcrt), multidrug resistance protein 1 (pfmdr1), multidrug resistance-associated protein 1 (pfmrp1), and Kelch protein 13 (k13) were present in 92.3%, 97.6%, 84.0%, 98.8%, and 68.3% of the parasites, respectively. The pfcrt K76T, pfmdr1 N86Y, pfmdr1 I185K, and pfmrp1 I876V mutations were present in 82.7%, 2.5%, 87.5%, and 59.8% isolates, respectively. The most prevalent haplotypes for pfdhfr, pfdhps, pfcrt and pfmdr1 were 51I/59R/108N/164L, 436A/437G/540E/581A, 74I/75E/76T/220S/271E/326N/356T/371I, and 86N/130E/184Y/185K/1225V, respectively. In addition, 57 isolates had three different point mutations (K191T, F446I, and P574L) and three types of N-terminal insertions (N, NN, NNN) in the k13 gene. In total, 43 distinct haplotypes potentially associated with multidrug resistance were identified. These findings demonstrate a high prevalence of multidrug-resistant P. falciparum in asymptomatic infections from diverse townships in Myanmar, emphasizing the importance of targeting asymptomatic infections to prevent the spread of drug-resistant P. falciparum.
Background: In the Greater Mekong sub-region, Plasmodium vivax has become the predominant species and imposes a major challenge for regional malaria elimination. This study aimed to investigate the variations in genes potentially related to drug resistance in P. vivax populations from the China-Myanmar border area. In addition, this study also wanted to determine whether divergence existed between parasite populations associated with asymptomatic and acute infections. Methods: A total of 66 P. vivax isolates were obtained from patients with acute malaria who attended clinics at the Laiza area, Kachin State, Myanmar in 2015. In addition, 102 P. vivax isolates associated with asymptomatic infections were identified by screening of volunteers without signs or symptoms from surrounding villages. Slide-positive samples were verified with nested PCR detecting the 18S rRNA gene. Multiclonal infections were further excluded by genotyping at msp-3α and msp-3β genes. Parasite DNA from 60 symptomatic cases and 81 asymptomatic infections was used to amplify and sequence genes potentially associated with drug resistance, including pvmdr1, pvcrt-o, pvdhfr, pvdhps, and pvk12. Results: The pvmdr1 Y976F and F1076L mutations were present in 3/113 (2.7%) and 97/113 (85.5%) P. vivax isolates, respectively. The K10 insertion in pvcrt-o gene was found in 28.2% of the parasites. Four mutations in the two antifolate resistance genes reached relatively high levels of prevalence: pvdhfr S58R (53.4%), S117N/T (50.8%), pvdhps A383G (75.0%), and A553G (36.3%). Haplotypes with wild-type pvmdr1 (976Y/997K/1076F) and quadruple mutations in pvdhfr (13I/57L/58R/61M/99H/117T/173I) were significantly more prevalent in symptomatic than asymptomatic infections, whereas the pvmdr1 mutant haplotype 976Y/997K/1076L was significantly more prevalent in asymptomatic than symptomatic infections. In addition, quadruple mutations at codons 57, 58, 61 and 117 of pvdhfr and
BackgroundEmergence of artemisinin-resistant malaria in Southeast Asian countries threatens the global control of malaria. Although K13 kelch propeller has been assessed for artemisinin resistance molecular marker, most of the mutations need to be validated. In this study, artemisinin resistance was assessed by clinical and molecular analysis, including k13 and recently reported markers, pfarps10, pffd and pfmdr2.MethodsA prospective cohort study in 1160 uncomplicated falciparum patients was conducted after treatment with artemisinin-based combination therapy (ACT), in 6 sentinel sites in Myanmar from 2009 to 2013. Therapeutic efficacy of ACT was assessed by longitudinal follow ups. Molecular markers analysis was done on all available day 0 samples.ResultsTrue recrudescence treatment failures cases and day 3 parasite positivity were detected at only the southern Myanmar sites. Day 3 positive and k13 mutants with higher prevalence of underlying genetic foci predisposing to become k13 mutant were detected only in southern Myanmar since 2009 and comparatively fewer mutations of pfarps10, pffd, and pfmdr2 were observed in western Myanmar. K13 mutations, V127M of pfarps10, D193Y of pffd, and T448I of pfmdr2 were significantly associated with day 3 positivity (OR: 6.48, 3.88, 2.88, and 2.52, respectively).ConclusionsApart from k13, pfarps10, pffd and pfmdr2 are also useful for molecular surveillance of artemisinin resistance especially where k13 mutation has not been reported. Appropriate action to eliminate the resistant parasites and surveillance on artemisinin resistance should be strengthened in Myanmar. Trial registration This study was registered with ClinicalTrials.gov, identifier NCT02792816.
BackgroundMerozoite proteins of the malaria parasites involved in the invasion of red blood cells are selected by host immunity and their diversity is greatly influenced by changes in malaria epidemiology. In the Greater Mekong Subregion (GMS), malaria transmission is concentrated along the international borders and there have been major changes in malaria epidemiology with Plasmodium vivax becoming the dominant species in many regions. Here, we aimed to evaluate the genetic diversity of P. vivax Duffy-binding protein gene domain II (pvdbp-II) in isolates from the eastern and western borders of Myanmar, and compared it with that from global P. vivax populations.Methodspvdbp-II sequences were obtained from 85 and 82 clinical P. vivax isolates from the eastern and western Myanmar borders, respectively. In addition, 504 pvdbp-II sequences from nine P. vivax populations of the world were retrieved from GenBank and used for comparative analysis of genetic diversity, recombination and population structure of the parasite population.ResultsThe nucleotide diversity of the pvdbp-II sequences from the Myanmar border parasite isolates was not uniform, with the highest diversity located between nucleotides 1078 and 1332. Western Myanmar isolates had a unique R391C mutation. Evidence of positive natural selection was detected in pvdbp-II gene in P. vivax isolates from the eastern Myanmar area. P. vivax parasite populations in the GMS, including those from the eastern, western, and central Myanmar as well as Thailand showed low-level genetic differentiation (FST, 0.000–0.099). Population genetic structure analysis of the pvdbp-II sequences showed a division of the GMS populations into four genetic clusters. A total of 60 PvDBP-II haplotypes were identified in 210 sequences from the GMS populations. Among the epitopes in PvDBP-II, high genetic diversity was found in epitopes 45 (379-SIFGT(D/G)(E/K)(K/N)AQQ(R/H)(R/C)KQ-393, π = 0.029) and Ia (416-G(N/K)F(I/M)WICK(L/I)-424], Ib [482-KSYD(Q/E)WITR-490, π = 0.028) in P. vivax populations from the eastern and western borders of Myanmar.ConclusionsThe pvdbp-II gene is genetically diverse in the eastern and western Myanmar border P. vivax populations. Positive natural selection and recombination occurred in pvdbp-II gene. Low-level genetic differentiation was identified, suggesting extensive gene flow of the P. vivax populations in the GMS. These results can help understand the evolution of the P. vivax populations in the course of regional malaria elimination and guide the design of PvDBP-II-based vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.