Airborne influenza viruses are responsible for serious respiratory diseases, and most detection methods for airborne viruses are based on extraction of nucleic acids. Herein, vertical-flowassay-based electrochemical paper immunosensors were fabricated to rapidly quantify the influenza H1N1 viruses in air after sampling with a portable electrostatic particle concentrator (EPC). The effects of antibodies, anti-influenza nucleoprotein antibodies (NP-Abs) and anti-influenza hemagglutinin antibodies (HA-Abs), on the paper sensors as well as nonpulsed high electrostatic fields with and without corona charging on the virus measurement were investigated. The antigenicity losses of the surface (HA) proteins were caused by H 2 O 2 via lipid oxidation-derived radicals and 1 O 2 via direct protein peroxidation upon exposure of a high electrostatic field. However, minimal losses in antigenicity of NP of the influenza viruses were observed, and the concentration of the H1N1 viruses was more than 160 times higher in the EPC than the BioSampler upon using NP-Ab based paper sensors after 60 min collection. This NP-Ab-based paper sensors with the EPC provided measurements comparable to quantitative polymerase chain reaction (qPCR) but much quicker, specific to the influenza H1N1 viruses in the presence of other airborne microorganisms and beads, and more costeffective than enzyme-linked immunosorbent assay and qPCR.
Particulate matter (PM) is one of the most critical air pollutants, and various instruments have been developed to measure PM mass concentration. Of these, quartz crystal microbalance (QCM) based instruments have received much attention. However, these instruments are subject to significant drawbacks: particle bounce due to poor adhesion, need for frequent cleanings of the crystal electrode, and non-uniform distribution of collected particles. In this study, we present an electrostatic particle concentrator (EPC)-based QCM (qEPC) instrument capable of measuring the mass concentration of PM 2.5 (PM smaller than 2.5 µm), while avoiding the drawbacks. Experimental measurements showed high collection efficiencies (∼99% at 1.2 liters/min), highly uniform particle distributions for long sampling periods (up to 120 min at 50 µg/m 3 ), and high mass concentration sensitivity [0.068(Hz/min)/(µg/m 3 )]. The enhanced uniformity of particle deposition profiles and mass concentration sensitivity were made possible by the unique flow and electrical design of the qEPC instrument.
We investigate the coupling properties of localized modes between two identical truncated triangular photonic crystals composed of air holes in a dielectric background. The frequency of even parity modes varies more sensitively to the distance between the truncated faces of the crystals; i.e., the coupling distance. This behavior is explained in terms of photonic bands and spatial distribution of fields. This localized mode with even parity is shown to be a good guided mode from the finite-difference time-domain simulation. The guided range can be tuned by varying the coupling distance and the degree of truncation.
Electrostatic samplers have been increasingly studied for sampling of viral and bacterial aerosols, and bioaerosol samplers are required to provide concentrated liquid samples with high physical collection and biological recovery, which would be critical for rapid detection. Here, the effects of sampling media and protocols on the physical collection and biological recovery of two airborne bacteria (Pseudomonas fluorescens and Micrococcus luteus) under electrostatic field were investigated using a personal electrostatic particle concentrator (EPC). Deionized (DI) water with/without sodium dodecyl sulfate (SDS) and phosphate buffered saline were tested as sampling media. A polystyrene container was mounted onto the collection electrode of the EPC for stable storage and vortexing after capture. Many bacterial cells were found to be deposited on the bottom surface of the container submerged in the media via electrophoresis, and among the tested sampling protocols, wet sampling with a container and subsequent vortexing offered the most bacteria in the collection suspension. Experiments with several sampling media showed that 0.001–0.01% SDS-DI water demonstrated the highest recovery rate in the EPC. These findings would be valuable in the field of sampling and subsequent rapid detection of bioaerosols.
Electrostatic samplers have been increasingly studied for sampling of viral and bacterial aerosols, and bioaerosol samplers are required to provide concentrated liquid samples with high physical collection and biological recovery, which would be critical for rapid detection. Here, the effects of sampling media and protocols on the physical collection and biological recovery of two airborne bacteria (Pseudomonas fluorescens and Micrococcus luteus) under electrostatic field were investigated using a personal electrostatic particle concentrator (EPC). Deionized (DI) water with/without sodium dodecyl sulfate (SDS) and phosphate buffered saline were tested as sampling media. A polystyrene container was mounted onto the collection electrode of the EPC for stable storage and vortexing after capture. Many bacterial cells were found to be deposited on the bottom surface of the container submerged in the media via electrophoresis, and among the tested sampling protocols, wet sampling with a container and subsequent vortexing offered the most bacteria in the collection suspension. Experiments with several sampling media showed that 0.01% SDS-DI water demonstrated a higher recovery rate and larger total bacterial concentrations in the EPC than in the BioSampler. These findings would be valuable in the field of sampling and subsequent rapid detection of bioaerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.