Intimate mixtures of trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) are a key feature of western Canadian boreal forests. These mixtures have the potential to produce high yields of merchantable fibre and provide numerous ecological services. Achievement of this potential has been difficult, and often expensive, to realize as a regeneration goal in managed forests. We report 21 to 25 year results of managed mixtures on two study sites where the white spruce was planted, and the density of aspen natural regeneration manipulated within five years of the stand initiation disturbance. On both sites, white spruce mortality did not increase with increasing aspen density. While height and diameter growth of white spruce declined with increasing aspen density, the effect was not entirely consistent across the two sites. Abrasion from aspen branches was the most common source of damage to spruce crowns. Mixed stands had greater merchantable volume production than pure spruce stands based on model projections. Application of aspen harvest at year 60, while protecting the spruce component for a second harvest entry at year 90, was projected to optimize combined yield for the mixedwood stands.
Abstract:We evaluated the Mixedwood Growth Model (MGM) at a whole model scale for pure and mixed species stands of aspen and white spruce in the western boreal forest. MGM is an individual tree-based, distance-independent growth model, designed to evaluate growth and yield implications relating to the management of white spruce, black spruce, aspen, lodgepole pine, and mixedwood stands in Alberta, British Columbia, Saskatchewan, and Manitoba. Our validation compared stand-level model predictions against re-measured data (volume, basal area, diameter at breast height (DBH), average and top height and density) from permanent sample plots using combined analysis of residual plots, bias statistics, efficiency and an innovative application of the equivalence test. For state variables, the model effectively simulated juvenile and mature stages of stand development for both pure and mixed species stands of aspen and white spruce in Alberta. MGM overestimates increment in older stands likely due to age-related pathology and weather-related stand damage. We identified underestimates of deciduous density and volume in Saskatchewan. MGM performs well for increment in postharvest stands less than 30 years of age. These results illustrate the comprehensive application of validation metrics to evaluate a complex model, and provide support for the use of MGM in management planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.