У статті виконано теоретичний аналіз нейро-нечітких систем, узагальнено та систематизовано їх основні характеристики, деталізовано особливості відомих алгоритмів розробки та обґрунтовано актуальність їх використання для побудови комп’ютеризованих навчальних програм. Представлено структурну модель адаптивної навчальної системи та описано систему вхідних навчальних правил, змодельованих за результатами проведеного експерименту. З метою визначення оцінки поточного рівня навченості студента введено ряд якісних показників (глибина навчання, ступінь та якість засвоєння), використання яких дозволило забезпечити повноту бази вхідних правил для здійснення нечіткого логічного виведення. Запропоновано метод на базі нечіткої нейронної мережі для побудови адаптивного модуля дистанційної системи передачі знань, застосування якого дає можливість підвищити швидкість та точність виконання обрахунків на етапі визначення навчального режиму відповідно до поточного рівня знань студента. Реалізовано адаптивний механізм побудови індивідуальної траєкторії навчання у системі дистанційної освіти на основі нечіткої нейронної мережі Мамдані. Розроблено гібридний алгоритм навчання нейро-нечіткої мережі та наведені етапи його функціонування. Досліджено особливості застосування гібридного алгоритму для визначення навчального режиму та встановлено переваги його використання шляхом паралельного й одночасного уточнення параметрів мережі. Запропоновано блок-схему гібридного алгоритму адаптивного навчального модуля, яка дозволяє мережі під час навчання модифікувати правила виведення відповідно до заданої точності навчання. Проведено експериментальне дослідження застосування гібридного алгоритму з використанням нечіткої нейронної мережі ANFIS в програмі MATLAB, що дозволило підтвердити ефективність запропонованої технології. Визначено перспективи використання математичного апарату нейромережевих технологій у дослідженні адаптивних характеристик автоматизованих навчальних систем.
The choosing a particular software product among the same type of analogues is one of the important problem of modern market relations. Even choosing the best one (with the highest numerical value of the generalized quality index), the question arises whether there is a sufficient level of quality of this software for one or for a number of tasks and functions they are solving. That is why, it is necessary to develop a scale of quality levels (qualimertic scale) for those software. The solution of this problem is the development of a qualitative scale for determining the quality indicators of such software and proving them based on experimental data of evaluation elements of quality metrics of software for measuring instruments. The authors developed three qualimetric scale models for software in this article: a uniform interval (or quantitative) scale, a scale based on the generalized Harrington utility desirability and a one based on the numbers of the Fibonacci series ("Golden section"). The number of evaluations determined by these functions was analyzed to prove the adequacy of developed qualimetric scale models. According to the results of the analysis, using the Fibonacci function ("Golden section") is more preferable then the Harrington function and the linear function for the developing the qualimetric scales of software products. Using the developed scale allows to quantify the software quality indicators determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.