Enantioenriched bicyclo[4.1.0]hept-2-enes were synthesized by Ir(I)-catalyzed carbocyclization of 1,6-enynes. No chiral ligands were used, CO and PPh(3) were the only ligands bound to iridium. Instead, the stereochemical information was localized on the counterion of the catalyst, generated in situ by reaction of Vaska's complex (trans-[IrCl(CO)(PPh(3))(2)]) with a chiral silver phosphate. Enantiomeric excesses up to 93% were obtained when this catalytic mixture was used. (31)P NMR and IR spectroscopy suggest that formation of the trans- [Ir(CO)(PPh(3))(2)](+) moiety occurs by chlorine abstraction. Moreover, density functional theory calculations support a 6-endo-dig cyclization promoted by this cationic moiety. The chiral phosphate anion (O-P*) controls the enantioselectivity through formation of a loose ion pair with the metal center and establishes a C-H···O-P* hydrogen bond with the substrate. This is a rare example of asymmetric counterion-directed transition-metal catalysis and represents the first application of such a strategy to a C-C bond-forming reaction.
Enantioselective cationic Rh(I)-catalyzed [2+2+2] cycloaddition reactions between diynes and isocyanates relying on the chiral anion strategy have been devised. In the presence of [Rh(cod)Cl]2, 1,4-bis(diphenylphosphino)butane, and the silver phosphate salt Ag(S)-TRIP as the unique source of chirality, axially chiral pyridones were isolated with ees up to 82%. This approach is novel in the field of chiral anion-mediated asymmetric catalysis since atroposelective transformations have so far remained unprecedented. It also proves to be complementary to the classical strategy based on chiral L-type ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.