Resistances to begomoviruses, including bipartite tomato mottle virus and monopartite tomato yellow leaf curl virus (TYLCV), have been introgressed to cultivated tomato (Solanum lycopersicum) from wild tomato accessions. A major gene, Ty-2 from S. habrochaites f. glabratum accession “B6013,” that confers resistance to TYLCV was previously mapped to a 19-cM region on the long arm of chromosome 11. In the present study, approximately 11,000 plants were screened and nearly 157 recombination events were identified between the flanking markers C2_At1g07960 (82.5 cM, physical distance 51.387 Mb) and T0302 (89 cM, 51.878 Mb). Molecular marker analysis of recombinants and TYLCV evaluation of progeny from these recombinants localized Ty-2 to an approximately 300,000-bp interval between markers UP8 (51.344 Mb) and M1 (51.645 Mb). No recombinants were identified between TG36 and C2_At3g52090, a region of at least 115 kb, indicating severe recombination suppression in this region. Due to the small interval, fluorescence in situ hybridization analysis failed to clarify whether recombination suppression is caused by chromosomal rearrangements. Candidate genes predicted based on tomato genome annotation were analyzed by RT-PCR and virus-induced gene silencing. Results indicate that the NBS gene family present in the Ty-2 region is likely not responsible for the Ty-2-conferred resistance and that two candidate genes might play a role in the Ty-2-conferred resistance. Several markers very tightly linked to the Ty-2 locus are presented and useful for marker-assisted selection in breeding programs to introgress Ty-2 for begomovirus resistance.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-014-0072-9) contains supplementary material, which is available to authorized users.
Tomato yellow leaf curl virus (TYLCV) hampers tomato production worldwide. Our previous studies have focussed on mapping and ultimately cloning of the TYLCV resistance genes Ty-1 and Ty-3. Both genes are derived from Solanum chilense and were shown to be allelic. They code for an RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type defined by a DFDGD catalytic domain. In this study, we first fine-mapped the TYLCV resistance in S. chilense LA1932, LA1960 and LA1971. Results showed that chromosomal intervals of the causal genes in these TYLCV-resistant accessions overlap and cover the region where Ty-1/Ty-3 is located. Further, virus-induced gene silencing was used to silence Ty-1/Ty-3 in tomato lines carrying TYLCV resistance introgressed from S. chilense LA1932, LA1938 and LA1971. Results showed that silencing Ty-1/Ty-3 compromised the resistance in lines derived from S. chilense LA1932 and LA1938. The LA1971-derived material remained resistant upon silencing Ty-1/Ty-3. Further, we studied the allelic variation of the Ty-1/Ty-3 gene by examining cDNA sequences from nine S. chilense-derived lines/accessions and more than 80 tomato cultivars, landraces and accessions of related wild species. The DFDGD catalytic domain of the Ty-1/Ty-3 gene is conserved among all tomato lines and species analysed. In addition, the 12 base pair insertion at the 5-prime part of the Ty-1/Ty-3 gene was found not to be specific for the TYLCV resistance allele. However, compared with the susceptible ty-1 allele, the Ty-1/Ty-3 allele is characterized by three specific amino acids shared by seven TYLCV-resistant S. chilense accessions or derived lines. Thus, Ty-1/Ty-3-specific markers can be developed based on these polymorphisms. Elevated transcript levels were observed for all tested S. chilenseRDR alleles (both Ty-1 and ty-1 alleles), demonstrating that elevated expression level is not a good selection criterion for a functional Ty-1/Ty-3 allele.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-015-0329-y) contains supplementary material, which is available to authorized users.
Key messageA chromosomal inversion associated with the tomatoTy-2gene for TYLCV resistance is the cause of severe suppression of recombination in a tomatoTy-2introgression line.AbstractAmong tomato and its wild relatives inversions are often observed, which result in suppression of recombination. Such inversions hamper the transfer of important traits from a related species to the crop by introgression breeding. Suppression of recombination was reported for the TYLCV resistance gene, Ty-2, which has been introgressed in cultivated tomato (Solanum lycopersicum) from the wild relative S. habrochaites accession B6013. Ty-2 was mapped to a 300-kb region on the long arm of chromosome 11. The suppression of recombination in the Ty-2 region could be caused by chromosomal rearrangements in S. habrochaites compared with S. lycopersicum. With the aim of visualizing the genome structure of the Ty-2 region, we compared the draft de novo assembly of S. habrochaites accession LYC4 with the sequence of cultivated tomato (‘Heinz’). Furthermore, using populations derived from intraspecific crosses of S. habrochaites accessions, the order of markers in the Ty-2 region was studied. Results showed the presence of an inversion of approximately 200 kb in the Ty-2 region when comparing S. lycopersicum and S. habrochaites. By sequencing a BAC clone from the Ty-2 introgression line, one inversion breakpoint was identified. Finally, the obtained results are discussed with respect to introgression breeding and the importance of a priori de novo sequencing of the species involved.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-015-2561-6) contains supplementary material, which is available to authorized users.
BackgroundA RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS).ResultsA total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides.ConclusionsThe SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1152) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.