A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anticancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using αtubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.
Local protein synthesis in neuronal dendrites is important for site-specific regulation of synaptic plasticity. In this study, we investigated whether translation initiation factors (eIFs) are present at the postsynaptic sites. High resolution confocal microscopy showed that the eIF4E and eIF4G (which bind the 5'-terminal mRNA cap), eIF5 (which is important during the 3' direction scanning to find an initiation codon), eIF6 (which mediates upregulation of translation by external stimuli), and eIF5A (which mediate translation upregulation under adverse conditions) were localized to the postsynaptic sites. Immunoblot and detergent extraction experiments also indicated that these eIFs were present in the synapse in association with the postsynaptic density (PSD). Our data provide evidence for the strategic positioning of eIFs at the postsynaptic site for initiation of translation in diverse situations.
Porphyromonas gingivalis
(
P. gingivalis
) is a major bacterial pathogen that causes periodontitis, a chronic inflammatory disease of tissues around the teeth. Periodontitis is known to be related to other diseases, such as oral cancer, Alzheimer’s disease, and rheumatism. Thus, a precise and sensitive test to detect
P. gingivalis
is necessary for the early diagnosis of periodontitis. The objective of this study was to optimize a rapid visual detection system for
P. gingivalis
. First, we performed a visual membrane immunoassay using 3,3′,5,5′-tetramethylbenzidine (TMB; blue) and coating and detection antibodies that could bind to the host laboratory strain, ATCC 33277. Antibodies against the
P. gingivalis
surface adhesion molecules RgpB (arginine proteinase) and Kgp (lysine proteinase) were determined to be the most specific coating and detection antibodies, respectively. Using these two selected antibodies, the streptavidin-horseradish peroxidase (HRP) reaction was performed using a nitrocellulose membrane and visualized with a detection range of 103–105 bacterial cells/ml following incubation for 15 min. These selected conditions were applied to test other oral bacteria, and the results showed that
P. gingivalis
could be detected without crossreactivity to other bacteria, including
Streptococcus mutans
and
Escherichia fergusonii
. Furthermore, three clinical strains of
P. gingivalis
, KCOM 2880, KCOM 2803, and KCOM 3190, were also recognized using this optimized enzyme immunoassay (EIA) system. To conclude, we established optimized conditions for
P. gingivalis
detection with specificity, accuracy, and sensitivity. These results could be utilized to manufacture economical and rapid detection kits for
P. gingivalis
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.