In the field of implantable titanium-based biomaterials, infections and inflammations are the most common forms of postoperative complications. The controlled local delivery of therapeutics from implants through polyelectrolyte multilayers (PEMs) has recently emerged as a versatile technique that has shown great promise in the transformation of a classical medical implant into a drug delivery system. Herein, we report the design and the elaboration of new biodegradable multidrug-eluting titanium platforms based on a polyelectrolyte multilayer bioactive coating that target infections. These systems were built up in mild conditions according to the layer-by-layer (L-b-L) assembly and incorporate two biocompatible polysaccharides held together through electrostatic interactions. A synthetic, negatively charged β-cyclodextrin-based polymer (PCD), well-known for forming stable and reversible complexes with hydrophobic therapeutic agents, was exploited as a multidrug reservoir, and chitosan (CHT), a naturally occurring, positively charged polyelectrolyte, was used as a barrier for controlling the drug delivery rate. These polyelectrolyte multilayer films were strongly attached to the titanium surface through a bioinspired polydopamine (PDA) film acting as an adhesive first layer and promoting the robust anchorage of PEMs onto the biomaterials. Prior to the multilayer film deposition, the interactions between both oppositely charged polyelectrolytes, as well the multilayer growth, were monitored by employing surface plasmon resonance (SPR). Several PEMs integrating 5, 10, and 15 bilayers were engineered using the dip coating strategy, and the polyelectrolyte surface densities were estimated by colorimetric titrations and gravimetric analyses. The morphologies of these multilayer systems, as well as their naturally occurring degradation in a physiological medium, were investigated by scanning electron microscopy (SEM), and their thicknesses were measured by means of profilometry and ellipsometry studies. Finally, the ability of the coated titanium multilayer devices to act as a drug-eluting system and to treat infections was validated with gentamicin, a relevant water-soluble antibiotic commonly used in medicine due to its broad bactericidal spectrum.
The development of new vectors to deliver DNA into cells for therapy of cancers or genetic diseases has been a major area of research for many years. However, the clinical application of this technology requires the development of efficient, reliable and sterile vectors enabling the transfer of genes in vivo. Non viral, polymer or lipid-based vectors offer a new impetus to gene therapy because they are less toxic than viral vectors (no endogenous recombination, fewer immunological reactions, easy production and delivery of large-sized plasmid).The aim of this study is to develop a new tool for DNA delivery composed of methacrylic polymeric (Eudragit ® RS and RL) nanoparticles. These nanoparticles were prepared by two meth- was between 2 and 4%. Nanoparticles prepared by nanoprecipitation were slightly more efficient than nanoparticles prepared from a double emulsion. Particle size was not an important factor for transfection, since no significant difference was observed with size between 50 and 350 nm. We showed that Eudragit ® RS and RL nanoparticles could introduce the transgene into different types of cells, but were generally less effective than the lipofectamine control.
This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.