Homogeneous and enzymatic catalysis offer complementary means to generate enantiomerically pure compounds. Incorporation of achiral biotinylated rhodium-diphosphine complexes into (strept)avidin yields artificial metalloenzymes for the hydrogenation of N-protected dehydroamino acids. A chemogenetic optimization procedure allows one to produce (R)-acetamidoalanine with 96% enantioselectivity. These hybrid catalysts display features reminiscent both of enzymatic and of homogeneous systems.
We report on the generation of artificial metalloenzymes based on the noncovalent incorporation of biotinylated rhodium-diphosphine complexes in (strept)avidin as host proteins. A chemogenetic optimization procedure allows one to optimize the enantioselectivity for the reduction of acetamidoacrylic acid (up to 96% ee (R) in streptavidin S112G and up to 80% ee (S) in WT avidin). The association constant between a prototypical cationic biotinylated rhodium-diphosphine catalyst precursor and the host proteins was determined at neutral pH: log K(a) = 7.7 for avidin (pI = 10.4) and log K(a) = 7.1 for streptavidin (pI = 6.4). It is shown that the optimal operating conditions for the enantioselective reduction are 5 bar at 30 degrees C with a 1% catalyst loading.
N-Heterocyclic carbene (NHC) platinum complexes have been highlighted as a promising and original platform for building new cytotoxic drugs of the cisplatin series. Mixed NHC-amine Pt(II) complexes have been prepared via a facile and modular two step sequence leading to trans-configured square planar species. They have been characterized by spectroscopic methods and X-ray diffraction studies. Their efficiency against both cisplatin sensitive (CEM and H460) and resistant (A2780/DDP, CH1/DDP, and SK-OV-3) cell lines has been demonstrated by in vitro experiments.
A new family of cyclometalated (N-heterocyclic carbene)-Pt(II) complexes bearing monodentate phosphines as ancillary ligands has been designed for use as precatalysts in 1,6-enyne cycloisomerization reactions. Highly enantioselective skeletal rearrangements of allylpropargyl-tosylamide derivatives have been developed by using (S)-Ph-Binepine as the chiral auxiliary. Enantiomeric excesses up to 97% have been obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.