In this study we sought to extend the plasma half-life while maintaining the potent antithrombin activity of hirudin. We hypothesized that gene fusion of hirudin to albumin would result in the expression of a slowly cleared hirudin molecule. A hirudin variant 3 (HV3) cDNA was obtained by gene synthesis, while a 1,996-bp full-length rabbit serum albumin (RSA) cDNA was selected from a rabbit liver cDNA library. Expression of the former in COS-1 cells conferred antithrombin activity on media conditioned by the cells, while expression of the latter resulted in the secretion of a 67-kD protein that reacted with mono-specific anti-RSA antibodies. Having shown independent expression of the two proteins, we next expressed two fusion proteins: HV3 linked via its C-terminus to albumin (HLA), and HV3 linked via its N-terminus to albumin (ALH). The former, but not the latter, inhibited both the amidolytic and fibrinogenolytic activities of thrombin. HLA also retained the dye-binding characteristics of RSA, as judged by Affi-Gel Blue chromatography. Highly similar concentrations of either commercial HV1 (40 nmol/L) or HLA (30 nmol/L) were required to halve the initial rate of thrombin reaction with chromogenic substrate S2238, suggesting the retention of high-affinity inhibition of thrombin by the fusion protein. An His-tagged form of HLA was purified by Ni2+-chelate affinity and heparin-Sepharose chromatography. The purified, radioiodinated protein was injected into rabbits, and demonstrated a catabolic half-life of 4.60 ± 0.16 days. This represents an extension of hirudin half-life in vivo of greater than two orders of magnitude; gel analysis of HLA(H)6 recovered from rabbits showed that it circulated in intact form. Our results provide a rationale for future testing of the biological effects of HLA, and support our initial hypothesis.
Filter-LR PRP platelet preparation appears to adversely affect platelet recovery and survival characteristics. The reasons for this effect are not clear. These results may not apply to all apheresis and PRP methods of platelet preparation.
SummaryThe critical role of thrombin in the pathogenesis of venous and arterial thrombosis, and the effectiveness of glycosaminoglycans as antithrombotic drugs are well known. Antithrombin III is a major inhibitor of thrombin and augmentation of its inhibitory actions by heparin is the basis for the clinical uses of heparin. Recent clinical and experimental studies have demonstrated that another glycosaminoglycan, dermatan sulfate, is an effective antithrombotic drug. Dermatan sulfate catalyses the inhibition of thrombin by heparin cofactor II. The concentrations of heparin cofactor II are higher in the plasmas of individuals with congenital antithrombin III deficiency and pregnant women than controls. The role of heparin cofactor II as a physiologic thrombin inhibitor is unknown. Enzyme-linked immunosorbent assays were used to quantify thrombin-heparin cofactor II and thrombin-antithrombin III endogenous to the plasmas of adult antithrombin III-Hamilton deficient subjects, their siblings with normal antithrombin III levels, pregnant women at term and 3 to 5 days after delivery. Both thrombin-antithrombin III and thrombin-heparin cofactor II complexed with vitronectin were detected in all the plasmas. Significantly, the concentrations of thrombin-heparin cofactor II-vitronectin were higher in the plasmas of congenital antithrombin III deficient subjects and in pre- and post-delivery plasmas than those of normal subjects. In addition, the concentrations of thrombin-heparin cofactor II decreased 3 to 5 days after delivery, reflecting the disappearance of the catalytically active dermatan sulfate elaborated by the placenta. Thus, heparin cofactor II normally inactivates thrombin in vivo, with its role increasing in conditions associated with high levels of heparin cofactor II and/or dermatan sulfate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.