The functional properties of proteins [capsid protein (CP), V1, and C4] potentially involved with movement of the monopartite begomovirus, Tomato yellow leaf curl virus (TYLCV), were investigated using microinjection of Escherichia coli expressed proteins and transient expression of GFP fusion proteins. The TYLCV CP localized to the nucleus and nucleolus and acted as a nuclear shuttle, facilitating import and export of DNA. Thus, the CP serves as the functional homolog of the bipartite begomovirus BV1. The TYLCV V1 localized around the nucleus and at the cell periphery and colocalized with the endoplasmic reticulum, whereas C4 was localized to the cell periphery. Together, these patterns of localization were similar to that of the bipartite begomovirus BC1, known to mediate cell-to-cell movement. However, in contrast to BC1, V1 and C4, alone or in combination, had a limited capacity to move and mediate macromolecular trafficking through mesophyll or epidermal plasmodesmata. Immunolocalization and in situ PCR experiments, conducted with tomato plants at three stages of development, established that TYLCV infection was limited to phloem cells of shoot apical, leaf, stem, and floral tissues. Thus, the V1 and/or C4 may be analogs of the bipartite begomovirus BC1 that have evolved to mediate TYLCV movement within phloem tissue.
Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.
In the Napa Valley of California, vineyards of 'Cabernet Franc' (CF) clone 214, 'Cabernet Sauvignon' clone 337, and 'Zinfandel' clone 1A (Z1A) with grapevines exhibiting foliar symptoms of red blotches, marginal reddening, and red veins that were accompanied by reduced sugar accumulation in fruit at harvest were initially suspected to be infected with leafroll-associated viruses. However, reverse-transcription polymerase chain reaction (PCR) tests were negative for all known leafroll-associated viruses, with the exception of Grapevine leafroll-associated virus 2 in Z1A. Metagenomic analysis of cDNA libraries obtained from double-stranded RNA enriched nucleic acid (NA) preparations from bark scrapings of dormant canes on an Illumina platform revealed sequences having a distant relationship with members of the family Geminiviridae. Sequencing of products obtained by PCR assays using overlapping primers and rolling circle amplification (RCA) confirmed the presence of a single circular genome of 3,206 nucleotides which was nearly identical to the genome of a recently reported Grapevine cabernet franc-associated virus found in declining grapevines in New York. We propose to call this virus "Grapevine red blotch-associated virus" (GRBaV) to describe its association with grapevine red blotch disease. Primers specific to GRBaV amplified a product of expected size (557 bp) from NA preparations obtained from petioles of several diseased source vines. Chip bud inoculations successfully transmitted GRBaV to test plants of CF, as confirmed by PCR analysis. This is the first report of a DNA virus associated with red blotch disease of grapevines in California.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.