The purpose of this study was to investigate the effect of acute resistance exercise (RE) on lipolysis within adipose tissue and subsequent substrate oxidation to better understand how RE may contribute to improvements in body composition. Lipolysis and blood flow were measured in abdominal subcutaneous adipose tissue via microdialysis before, during, and for 5 h following whole body RE as well as on a nonexercise control day (C) in eight young (24 +/- 0.7 yr), active (>3 RE session/wk for at least 2 yr) male participants. Fat oxidation was measured immediately before and after RE via indirect calorimetry for 45 min. Dialysate glycerol concentration (an index of lipolysis) was higher during (RE: 200.4 +/- 38.6 vs. C: 112.4 +/- 13.1 micromol/l, 78% difference; P = 0.02) and immediately following RE (RE: 184 +/- 41 vs. C: 105 + 14.6 micromol/l, 75% difference; P = 0.03) compared with the same time period on the C day. Energy expenditure was elevated in the 45 min after RE compared with the same time period on the C day (RE: 104.4 +/- 6.0 vs. C: 94.5 +/- 4.0 kcal/h, 10.5% difference; P = 0.03). Respiratory exchange ratio was lower (RE: 0.71 +/- 0.004 vs. C: 0.85 +/- .03, 16.5% difference; P = 0.004) and fat oxidation was higher (RE: 10.2 +/- 0.8 vs. C: 5.0 +/- 1.0 g/h, 105% difference; P = 0.004) following RE compared with the same time period on the C day. Therefore, the mechanism behind RE contributing to improved body composition is in part due to enhanced abdominal subcutaneous adipose tissue lipolysis and improved whole body fat oxidation and energy expenditure in response to RE.
The effect of acute resistance exercise (RE) on whole body energy expenditure (EE) and alpha(2)-adrenergic receptor (alpha(2)-AR) regulation of lipolysis in subcutaneous abdominal adipose tissue (SCAAT) was determined in sedentary lean (LN) and obese (OB) men. Lipolysis was monitored using microdialysis in 10 LN [body mass index (BMI) 20.9 +/- 0.6] and 10 OB (BMI 36.2 +/- 2.7) men before, during, and for 24 h after RE. EE was measured before and immediately after RE for 40 min. Changes in interstitial glycerol were measured in SCAAT with three microdialysis probes perfused with a control solution, phentolamine (alpha(2)-AR antagonist), or propranolol (beta-AR antagonist). EE and fat oxidation (FOX) were significantly (P < 0.001) elevated immediately post-RE compared with pre-RE in LN and OB subjects, with no differences between groups. RE-induced increases in SCAAT glycerol concentrations from rest to peak exercise were greater in LN than in OB men in the control (LN 142.1 +/- 30.8 vs. OB 65.4 +/- 14.2%, P = 0.03) and phentolamine probes (LN 187.2 +/- 29.6 vs. OB 66.7 +/- 11.0%, P = 0.002). Perfusion of propranolol had no effect on interstitial glycerol concentrations over the time course of the experiment in either group. Plasma insulin concentrations were significantly lower (P = 0.002) and plasma growth hormone (GH) was significantly higher (P = 0.03) in LN compared with OB men. The mechanism behind RE contributing to improved body composition may in part be due to enhanced SCAAT lipolysis and improved EE and FOX in response to RE in LN and OB men. The blunted SCAAT lipolytic response to RE in OB compared with LN men is unrelated to RE-induced catecholamine activation of the antilipolytic alpha(2)-ARs and may be due to depressed GH in OB subjects.
Although traditional high-intensity interval training (HIIT) has been effective in improving body composition and physical fitness, it is unclear how multimodal HIIT affects these variables. This study compared the differences between these two training programs on body composition and physical fitness in apparently healthy, nonobese young adult females. A total of 16 participants (mean age = 23 ± 5.08 years) completed a 12-week HIIT intervention with two treatment groups: rowing and multimodal. Immediately before and after the intervention, the following measures were assessed: body mass index (BMI), total body mass, waist circumference, waist-to-height ratio, total body fat %, visceral adipose tissue, lean mass, bone mineral outcomes, cardiovascular fitness, and muscular fitness. A general linear model with repeated measures was used to assess changes over time for the group as a whole, as well as between-group differences. For the group as a whole, there were significant decrease in total body fat % (p = 0.04) and significant increases in BMI (p = 0.015), total body mass (p = 0.003), lean mass (p < 0.001), bone mineral content (BMC) (p < 0.001), VO2max (p = 0.01), broad jump (p = 0.001), squat endurance (p = 0.006), press (p < 0.001), back squat (p < 0.001), and deadlift (p < 0.001) one repetition maximum (1RM). The multimodal group (p < 0.001) increased deadlift 1RM significantly more than the rowing group (p = 0.002). HIIT can be an effective means for improving cardiovascular and muscular fitness, increasing lean mass and BMC, and thereby improving cardiometabolic as well as musculoskeletal health in nonobese females. Using a multimodal approach may give the added benefit of superior muscular strength increases.
We have recently demonstrated in young adults that an anabolic response with mixed meal protein intake above ~35 g/meal, previously recognized as an “optimal” protein dose, was further stimulated. However, it is unknown if this applies to older adults. We therefore examined anabolic response to a mixed meal containing either 35 g (MOD, moderate amount of protein) or 70 g (HIGH, high amount of protein) in a randomized cross-over metabolic study in older adults (n = 8). Primed continuous infusions of L-[2H5] phenylalanine and L-[2H2]tyrosine were performed to determine whole-body protein kinetics and muscle protein fractional synthesis rate (MPS) in basal fasted and fed states. Whole-body protein kinetics (NB, net protein balance; PS, protein synthesis; PB, protein breakdown) and MPS was expressed as changes from the baseline post-absorptive state. Consistent with our previous findings in young adults, both feedings resulted in a positive NB, with HIGH being more positive than MOD. Furthermore, NB (expressed as g protein∙240 min) increased linearly with an increasing amount of protein intake, expressed relative to lean body mass. The positive NB was achieved due mainly to the suppression of PB in both MOD and to a greater extent HIGH, while PS was only increased in HIGH. Consistent with the whole-body data, MPS was significantly higher in HIGH than MOD. Plasma concentrations of essential amino acids and insulin were greater in HIGH vs. MOD. We conclude that in the context of mixed meals, whole-body anabolic response linearly increases with increasing protein intake primarily through the suppression of PB, and MPS was further stimulated with protein intake above the previously considered “optimal” protein dose in older adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.