Intra-articular prolotherapy provided significant relief of sacroiliac joint pain, and its effects lasted longer than those of steroid injections. Further studies are needed to confirm the safety of the procedure and to validate an appropriate injection protocol.
We examined the effects of equianesthetic concentrations of sevoflurane, desflurane, isoflurane, and halothane on the spontaneous contractility of isolated human pregnant uterine muscles. We also determined if their action was related to potassium channels. Uterine specimens were obtained from normal full-term pregnant women undergoing elective lower-segment cesarean delivery. Longitudinal muscle strips were mounted vertically in tissue chambers. Their isometric tension was recorded while they were exposed to 0.5-3 minimum alveolar concentration (MAC) of volatile anesthetics in the absence and presence of the high conductance calcium-activated potassium channel blocker, tetraethylammonium, or the adenosine triphosphate-sensitive potassium channel (K(ATP))-blocker, glibenclamide. The anesthetics examined produced a dose-dependent depression of contractility. The inhibitory potency of sevoflurane and desflurane was comparable to, whereas that of isoflurane was smaller than, that of halothane: concentrations causing 50% inhibition of the contractile amplitude (ED(50)) were 1.72, 1.44, 2.35, and 1.66 MAC (P < 0.05), respectively. Tetraethylammonium and glibenclamide did not affect the uterine response to the anesthetics, except for glibenclamide, which attenuated the response to isoflurane. These results indicate that the volatile anesthetics have inhibitory effects on the contractility of the human uterus. The inhibitory effect of isoflurane may in part be mediated through activation of K(ATP) channels.
After tissue injury, there is an enhanced pain behavior and cardiovascular response, representing a facilitated state of spinal processing. Spinally delivered gabapentin had no evident effect on resting heart rate or blood pressure, but it attenuated the enhanced pain behavior and cardiovascular response otherwise produced by injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.