We demonstrate a hard-X-ray self-seeded (HXRSS) free-electron laser (FEL) at Pohang Accelerator Laboratory with an unprecedented peak brightness (3.2 × 10 35 photons/(s•mm 2 •mrad 2 •0.1%BW)). The self-seeded FEL generates hard X-ray pulses with improved spectral purity; the average pulse energy was 0.85 mJ at 9.7 keV, almost as high as in SASE mode; the bandwidth (0.19 eV) is about 1/70 as wide, the peak spectral brightness is 40 times higher than in self-ampli ed spontaneous emission (SASE) mode, and the stability is excellent with > 94% of shots exceeding the average SASE intensity. Using this self-seeded XFEL, we conducted serial femtosecond crystallography (SFX) experiments to map the structure of lysozyme protein; data-quality metrics such as R split , multiplicity, and signal-to-noise ratio for the SFX were substantially increased. We precisely map out the structure of lysozyme protein with substantially better statistics for the diffraction data and signi cantly sharper electron density maps compared to maps obtained using SASE mode.
In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation.
We propose a novel injection scheme for laser-driven wakefield acceleration in which controllable localized electron injection is obtained by inserting nanoparticles into a plasma medium. The nanoparticles provide a very confined electric field that triggers localized electron injection where nonlinear plasma waves are excited but not sufficient for background electrons self-injection. We present a theoretical model to describe the conditions and properties of the electron injection in the presence of nanoparticles. Multi-dimensional particle-in-cell (PIC) simulations demonstrate that the total charge of the injected electron beam can be controlled by the position, number, size, and density of the nanoparticles. The PIC simulation also indicates that a 5-GeV electron beam with an energy spread below 1% can be obtained with a 0.5-PW laser pulse by using the nanoparticle-assisted laser wakefield acceleration.
We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.