In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation.
The interfacial contact area between the fuel and oxidizer components plays an important role in determining the combustion reactivity of nanothermite composites. In addition, the development of compact and reliable ignition methods can extend the applicability of nanothermite composites to various thermal engineering fields. In this study we report the development of a micro-chip initiator with controlled combustion reactivity using concepts usually applied to microelectromechanical systems (MEMS) and simple nanofabrication processes. The nanothermite composites fabricated in this study consisted of aluminum nanoparticles (Al NPs) as the fuel and copper oxide nanoparticles (CuO NPs) as the oxidizer accumulated on a silicon oxide substrate with a serpentine-shaped gold (Au) electrode. The micro-chip initiator rapidly ignited and exploded when minimal current was supplied. The effects of stacking structures of Al and CuO-based multilayers on the combustion properties were systematically investigated in terms of the pressurization rate, peak explosion time, and heat flow. Pressurization rates of 0.004-0.025 MPa μs −1 and heat flows of 2.0-3.8 kJ g −1 with a commonly fast response time of less than 20 ms could be achieved by simply changing the interfacial structures of the Al and CuO multilayers. The controllability of combustion reactivity of micro-chip initiator can be made for general nanothermite composites composed of Al and various metal oxides (e.g. Fe 2 O 3 , CuO, KMnO 4 , etc). The micro-chip initiator fabricated in this study was reliable, compact, and proved to be a versatile platform, exhibiting controlled combustion reactivity and fast response time, which could be used for various civilian and military thermal engineering applications, such as in initiators and propulsion, welding, and ordinance systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.