-The research concerned of the regeneration of plants from embryos obtained from anther cultures of ginseng (Panax ginseng C. A. Meyer). The aim was to determine the influence of the regeneration medium on the efficiency of the regeneration process. We conducted to determine the optimum conditions such as cold pretreatment, plant growth regulators and carbon sources on anther culture of P. ginseng. Highest callus formation rate was obtained when flower buds pretreated at 4℃ for 1 day. Among the treated growth regulators with various degrees of concentration in Murashige and Skoog`s (MS) medium, 4.53 μM of 2.4-dichlorophenoxyacetic acid and 4.44 μM of 6-benzylaminopurine gives the most responsive callus with the frequency of 73.89% and 129.53 g of fresh weight. When we used 3-9% of sucrose and maltose among the different kinds and various concentrations of carbohydrates, callus was formed highest 67.29% in the medium with 3% of sucrose. Shoots induced from callus supplemented with 28.9 μM of gibberellic acid and rooted in Gamborg`s B5 medium supplemented with 14.7 μM of indole-3-butyric acid.
-Morus Folium (Sang-yeop in Korean) is one of the most important Oriental medicinal plants. In Korea, both M. alba and M. cathayana are regarded as the botanical sources for Morus Folium. In order to discriminate M. alba and M. cathayana from their adulterant, M. tricuspidata, mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 2 region was targeted for molecular analysis with universal primers. DNA polymorphisms, including SNP sites, insertions, and deletions, were detected among these three species sequencing data. Based on these DNA polymorphisms, specific primers were designed for the three species respectively. Multiplex PCR was conducted for molecular authentication of M. alba, M. cathayana, and M. tricuspidata with specific primers. The present results indicate that it is possible to identify Morus Folium from its adulterant using mitochondrial nad7 intron 2 region. The established multiplex-PCR system was proved to be effective for identification of Morus Folium. The results indicate that mitochondrial introns can be used for inter-specific polymorphic study, and the described method can be applied for molecular identification of medicinal materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.