The immunoglobulin E (IgE) level in serum is an important factor in the examination of allergy. Ferrocene (Fc)-modified self-assembled monolayers (SAMs) were placed on an indium tin oxide (ITO) electrode as a sensing layer for the detection of human IgE. The Fc moiety in the SAMs facilitated the electron transfer through the organic SAMs layer and electrocatalytic signal amplification. The electrochemical measurement was accomplished after the sandwich type immobilization of the receptor antibody, target human IgE, and enzyme conjugated secondary antibody. The enzyme product, p-aminophenol, was quantitatively analyzed by redox cycling via Fc. In addition, the electrochemical impedance spectroscopy (EIS) was investigated for the detection of IgE. The limit of detection (LOD), limit of quantification (LOQ), and dynamic range of the electrochemical sensor were 3 IU/mL, 10 IU/mL, and from 10 IU/mL to 100 IU/mL, respectively.
The methodological approach of hammering multiple rows is newly proposed to evaluate today's SDRAMs, employed with in-DRAM mitigation circuits. The multiple rows are selected based on the one-row hammering test (single row hammering without refresh commands) and are exploited to defeat the employed mitigation algorithm. We irradiated the target sample using an X-ray to observe the reactions of the mitigation circuit when various combinations of multiple rows are hammered. The results showed a four times reduction in the number of hammering thresholds under the one-row hammering test. The same radiated sample showed no errors when one or a few rows were hammered due to the built-in mitigation circuit. However, multiple rows hammering (MRH) demonstrated its effectiveness by generating errors despite an active mitigation circuit. In this paper, we explore the X-ray damage results in the aging of the DRAM sample and induces vulnerabilities from the row hammering error perspective. Also, we use the error bits detected by MRH to investigate the coverage pitfalls of the mitigation circuit employed in the sample DRAM. Finally, we newly evaluate the remaining retention time under row hammering stress to explain the coverage loss in the mitigation strategy based solely on hammering counts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.