The wide application of Nd-Fe-B permanent magnets, in addition to rare-earth metal resource constraints, creates the necessity of the development of efficient technologies for recycling sintered Nd-Fe-B permanent magnets. In the present study, a magnet-to-magnet recycling process is considered. As starting materials, magnets of different grades were used, which were processed by hydrogen decrepitation and blending the powder with NdHx. Composition inhomogeneity in the Nd2Fe14B-based magnetic phase grains in the recycled magnets and the existence of a core-shell structure consisting of a Nd-rich (Dy-depleted) core and Nd-depleted (Dy-enriched) shell are demonstrated. The formation of this structure results from the grain boundary diffusion process of Dy that occurs during the sintering of magnets prepared from a mixture of Dy-free (N42) and Dy-containing magnets. The increase in the coercive force of the N42 magnet was shown to be 52%. The simultaneous retention of the remanence, and even its increase, were observed and explained by the improved isolation of the main magnetic phase grains as well as their alignment.
The focus of new technologies on the formation of inhomogeneous distributions of heavy rare-earth metals (REMs) in hard magnetic Nd–Fe–B materials is of scientific importance to increase their functional properties, along with preserving existing sources of heavy REMs. This paper focused on the coercivity enhancement of Nd2Fe14B-based magnets by optimizing the microstructure, which includes the processes of grain boundary structuring via the application of a Dy3Co0.6Cu0.4Hx alloy added to the initial Nd–Fe–B-based powder mixtures in the course of their mechanical activation. We have studied the role of alloying elements in the formation of phase composition, microstructure, the fine structure of grains, and the hysteretic properties of hard magnetic Nd(R)2Fe14B-based materials. It was shown that the Dy introduction via the two-component blending process (the hydrogenated Dy3Co0.6Cu0.4 compound is added to a powder mixture) resulted in the formation of the core-shell structure of 2–14–1 phase grains. The efficient improvement of the coercivity of Nd(RE)–Fe–B magnets, with a slight sacrifice of remanence, was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.