Introduction: The multi-copied genes coding for the human 18, 5.8, and 28S ribosomal RNA (rRNA) are located in five pairs of acrocentric chromosomes forming so-called rDNA. Human genome contains unmethylated, slightly methylated, and hypermethylated copies of rDNA. The major research question: What is the rDNA copy number (rDNA CN) and the content of hypermethylated rDNA as a function of age?Materials and Methods: We determined the rDNA CN in the blood leukocyte genomes of 651 subjects aged 17 to 91 years. The subjects were divided into two subgroups: “elderly” group (E-group, N = 126) – individuals over 72 years of age (the age of the population’s mean lifetime for Russia) and “non-elderly” group (NE-group, N = 525). The hypermethylated rDNA content was determined in the 40 DNA samples from the each group. The change in rDNA during replicative cell senescence was studied for the cultured skin fibroblast lines of five subjects from NE-group. Non-radioactive quantitative dot- and blot-hybridization techniques (NQH) were applied.Results: In the subjects from the E-group the mean rDNA CN was the same, but the range of variation was narrower compared to the NE-group: a range of 272 to 541 copies in E-group vs. 200 to 711 copies in NE-group. Unlike NE-group, the E-group genomes contained almost no hypermethylated rDNA copies. A case study of cultured skin fibroblasts from five subjects has shown that during the replicative senescence the genome lost hypermethylated rDNA copies only.Conclusion: In the elderly group, the mean rDNA CN is the same, but the range of variation is narrower compared with the younger subjects. During replicative senescence, the human fibroblast genome loses hypermethylated copies of rDNA. Two hypotheses were put forward: (1) individuals with either very low or very high rDNA content in their genomes do not survive till the age of the population’s mean lifetime; and/or (2) during the aging, the human genome eliminates hypermethylated copies of rDNA.
We previously hypothesized that the sequence of transcribed region of human ribosomal repeats is selectively accumulated in circulating extracellular DNA due to its increased resistance to double-strand breaks caused by accumulation of single-chain breaks produced by nucleases. The contents of rDNA in blood serum DNA and in DNA from leukocytic nuclei both in healthy donors and in patients with rheumatoid arthritis were compared using dot hybridization method. By the content of non-methylated CpG-repeats, transcribed region of rDNA is identical to bacterial DNA, which is characterized by potent immunostimulatory effect. The transcribed region of rDNA (13.3 kb) contains more than 200 CpG-motifs capable of interacting with TLR9 receptors, which are the mediators of the cell immune response to the action of CpG-rich DNA fragments. The data suggest that DNA from dead cells circulating in the peripheral blood is enriched with sequences possessing potent immunostimulatory properties.
Our findings confirm the hypothesis of disturbance of the 'translational homeostasis' in the pathogeneses of autism and schizophrenia, and would help explain why oxidative stress markers are discovered in most autism studies, whereas similar reports related to schizophrenia are far less consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.