AIM: revealing microstructural brain connectivity alterations in patients with paranoid schizophrenia.
MATERIALS AND METHODS: 25 patients diagnosed with paranoid schizophrenia were examined. The control group was 30 healthy people without neurological and somatic diseases. Studies were carried out on the Philips Ingenia magnetic resonance tomograph, with a magnetic field strength of 1.5 T using the DTI pulse sequence. Data processing was carried out using the tractographic module DSI Studio.
RESULTS: According to the group assessment of the obtained tractographic brain data, significant differences in microstructural connectivity in the group of patients with paranoid schizophrenia were detected. A pathological conglomerate of cortical-subcortical structure connectivity was found, different from the sets of normal connections in the control group, consisting of a cingulate gyrus, hippocampus and thalamus. Such a pathological control center is one of the possible tractographic patterns of schizophrenia. In our opinion, the pathological connectivity of the hippocampus and thalamus, as one of the main components of the limbic system of the brain, reduces the controlling emotional function of the cingulate cortex, the control center of this system. In this case, excessive connectivity of the hippocampus with the cingulate cortex may indicate an incorrect implementation of their interaction, which also affects the occurrence or progression of emotional-will disorders. The thalamus, being the center of transmission of sensory and motor information from the sensory organs, can transmit incorrect redundant data about what is happening around the body and participate in the formation of auditory and visual hallucinations. Also, the pathological work of the thalamus may be involved in the progression of autism. Thus, the patient is increasingly losing touch with reality, increasingly preferring unknowingly fantasy, erasing ties with reality. Data from one of the characteristics of the artiformal neural network the clustering coefficient were significantly increased in patients compared to the control group, which may indicate the presence of excess, abnormal microstructural connectivity in the network.
CONCLUSION: The study confirms the presence of microstructural and neural network changes in the hippocampus, thalamus, cingulate cortex and basal ganglia. These changes are peculiar tractographic semiotic signs of brain pathology in paranoid schizophrenia. This study is a step in the search for a tool to identify the features of neuroplasticity disorders in this disease and schizophrenia screening (2 figures, 3 tables, bibliography: 13 refs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.