Аннотация. Исследуется лагранжева геометрия алгебраических многообразий. Для произвольного гладкого компактного односвязного алгебраического многообразия строится семейство конечномерных гладких кэлеровых многообразий, элементы которого представляются классами эквивалентных лагранжевых подмногообразий, удовлетворяющих вводимому нами условию D-точности. В связи с теорией вейнстейновых структур такие многообразия оказываются связанными со специальной бор-зоммерфельдовой геометрией, построенной автором в предыдущих работах. Это позволяет выделить некоторые стабильные компоненты в предлагаемых многообразиях модулей и выдвинуть гипотезу о том, что такие стабильные компоненты не только кэлеровы, но и алгебраичны.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.