Using a stochastic framework, we propose two algorithms for the problem of obtaining a single high-resolution image from multiple noisy, blurred, and undersampled images. The first is based on a Bayesian formulation that is implemented via the expectation maximization algorithm. The second is based on a maximum a posteriori formulation. In both of our formulations, the registration, noise, and image statistics are treated as unknown parameters. These unknown parameters and the high-resolution image are estimated jointly based on the available observations. We present an efficient implementation of these algorithms in the frequency domain that allows their application to large images. Simulations are presented that test and compare the proposed algorithms.
In this paper, we propose a maximum a posteriori ramework for the super-resolution problem, i.e., reconstructing high-resolution images from shifted, rotated, low-resolution degraded observations. The main contributions of this work are two; first, the use of a new locally adaptive edge preserving prior for the super-resolution problem. Second an efficient two-step reconstruction methodology that includes first an initial registration using only the low-resolution degraded observations. This is followed by a fast iterative algorithm implemented in the discrete Fourier transform domain in which the restoration, interpolation and the registration subtasks of this problem are preformed simultaneously. We present examples with both synthetic and real data that demonstrate the advantages of the proposed framework.
We present a maximum likelihood ( M l ) solution to the problem of obtaining high-resolution images from sequences of noisy, blurred, and low-resolution images. In our formulation, the registration parameters of the low-resolution images, the degrading blur, and noise variance are unknown. Our algorithm has the advantage that all unknown parameters are obtained simultaneously using all of the available data.
An efficient implementation is presented in the j-equency domain, based on the Expectation Maximization (EM algorithm.Simulations demonstrate the eflectiseness of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.