Dynamic programming (DP) provides the optimal global solution to the energy management problem for hybrid electric vehicles (HEVs), but needs complete a-priori knowledge of the driving cycle and has high computational requirements. This article presents a possible methodology to extract rules from the dynamic programming solution to design an implementable rule-based strategy. The case study considered is a series/parallel HEV, in which a clutch allows to switch from one configuration to another. The strategy works according to a two layer policy: the supervisory controller, which decides the powertrain configuration (either series or parallel), and the energy management, which decides the power split. The process of deriving the rules from the optimal solution is described. Then, the performance of the resulting rule-based strategy is studied and compared with the solution given by the dynamic programming, which functions as a benchmark.
Dynamic programming is known to provide the optimal solution to the energy management problem. However, it is not implementable online because it requires complete a-priori knowledge of the driving cycle and high computational requirements. This article presents a methodology to extract an implementable rule-based strategy from the dynamic programming results and thus build a near-optimal controller. The case study discussed in this paper focused on mode switching in a series/parallel hybrid vehicle, in which a clutch may be used to change the powertrain topology. Because of the complexity of the system, the controller is divided in two layers: the supervisory controller, which decides the powertrain configuration, and the energy management, which decides the power split. The process of deriving the rules from the optimal solution is described in detail. Then, the performance of the resulting rule-based strategy is studied and compared with the solution given by dynamic programming, which functions as a benchmark. Then another comparison is performed with respect to the equivalent consumption minimisation strategy (ECMS) which, if optimally tuned, can achieve optimal performance as close to DP as possible with the advantage of being implementable.
Absfract-This paper is focused on the performance of a novel type of adjustable speed power generating set.The set consists of a diesel engine, an axial type permanent magnet generator and ACIAC converter. The engine is designed to operate over a wide speed range powering a high efficiency permanent magnet generator. The generator output is fed to a power electronics controller designed to maintain the voltage and frequency to the requirement of the load. The power to weight ratio of the set is considerably more than conventional set incorporating a wound field generator and RIC engine running a t 1500/1800 rpm. The axial flux generator used is light, short and higher in eficiency than conventional type. The unique feature of the system is the control algorithm, which ensures fast system response and accurately map the engine torque curve to load demand. The paper will present the concept and main features of the recently developed Variable Speed-Integrated Generating set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.