BackgroundTumor immune tolerance can derive from the recruitment of suppressor cell populations, including myeloid-derived suppressor cells (MDSC). In cancer patients, MDSC accumulation correlates with increased tumor burden, but the mechanisms of MDSC induction remain poorly understood.MethodsThis study examined the ability of human tumor cell lines to induce MDSC from healthy donor PBMC using in vitro co-culture methods. These human MDSC were then characterized for morphology, phenotype, gene expression, and function.ResultsOf over 100 tumor cell lines examined, 45 generated canonical CD33+HLA-DRlowLineage- MDSC, with high frequency of induction by cervical, ovarian, colorectal, renal cell, and head and neck carcinoma cell lines. CD33+ MDSC could be induced by cancer cell lines from all tumor types with the notable exception of those derived from breast cancer (0/9, regardless of hormone and HER2 status). Upon further examination, these and others with infrequent CD33+ MDSC generation were found to induce a second subset characterized as CD11b+CD33lowHLA-DRlowLineage-. Gene and protein expression, antibody neutralization, and cytokine-induction studies determined that the induction of CD33+ MDSC depended upon over-expression of IL-1β, IL-6, TNFα, VEGF, and GM-CSF, while CD11b+ MDSC induction correlated with over-expression of FLT3L and TGFβ. Morphologically, both CD33+ and CD11b+ MDSC subsets appeared as immature myeloid cells and had significantly up-regulated expression of iNOS, NADPH oxidase, and arginase-1 genes. Furthermore, increased expression of transcription factors HIF1α, STAT3, and C/EBPβ distinguished MDSC from normal counterparts.ConclusionsThese studies demonstrate the universal nature of MDSC induction by human solid tumors and characterize two distinct MDSC subsets: CD33+HLA-DRlowHIF1α+/STAT3+ and CD11b+HLA-DRlowC/EBPβ+, which should enable the development of novel diagnostic and therapeutic reagents for cancer immunotherapy.
Background: Sarcoidosis is a systemic granulomatous disease of unknown etiology that affects the lungs in 90% of patients, but has a wide range of disease manifestations and outcomes including chronic and progressive courses. Noninvasive biomarkers are needed to assess these outcomes and guide decisions for long term monitoring and treatment. Interferon-gamma (IFN-γ)inducible chemotactic cytokines (chemokines), CXCL9, CXCL10 and CXCL11, show promise in this regard because they have been implicated in the pathogenesis of and reflect the burden of granulomatous inflammation. CXCL11 has been reported to have unique functional properties in modulating adaptive immunity in model systems so our goal was to examine serum levels of CXCL11 in relation to clinical outcomes in a heterogeneous cohort of sarcoidosis subjects. Methods: CXCL19, CXCL10, and CXCL11 serum levels were measured in sarcoidosis and healthy subjects using ELISA assay. We determined relationships between CXCL11 and standard clinical inflammatory markers, expression of IFN-γ-related genes in whole blood, organ involvement, dyspnea scores, and measures of pulmonary function. Results: In a cross-sectional analysis of 104 sarcoidosis subjects, serum CXCL11 was significantly elevated compared to 49 healthy controls (p < 0.001). CXCL11 was positively correlated with CXCL9 and CXCL10 (p < 0.001), sedimentation rate (p < 0.01), and mean expression of three IFN-γ-related genes in whole blood (GBP1, STAT1, and STAT2) (p < 0.001). CXCL11 was inversely correlated with FVC %predicted (%pred) and FEV1 %pred and higher levels were associated with higher patient-reported dyspnea scores. We found positive correlations between CXCL11 and number of organs involved. Using survival analyses, we found that
Background: Sarcoidosis is a granulomatous inflammatory disease with limited blood markers to predict outcomes. The interferon-gamma (IFN-γ)-inducible chemotactic cytokines (chemokines), CXCL9 and CXCL10, are both increased in sarcoidosis patients, yet they possess important molecular differences. Our study determined if serum chemokines correlated with different aspects of disease severity. Methods:We measured CXCL9 and CXCL10 serum levels at initial study visits and longitudinally in sarcoidosis subjects using ELISA. We examined these chemokines' relationships with pulmonary, and organ involvement outcomes, their gene expression, peripheral blood immune cell populations, and immunosuppression use.Results: Higher CXCL10 levels negatively correlated with FVC, TLC, and DLCO at subjects' initial visit and when measured repeatedly over two years. CXCL10 also positively correlated with longitudinal respiratory symptom severity. Additionally, for every log 10 (CXCL10) increase, the risk of longitudinal pulmonary function decline increased 8.8 times over the 5-year study period (95% CI 1.6 -50, p = 0.014, log 10 (CXCL0) range 0.84 -2.7). In contrast, CXCL9 levels
Obstructive pulmonary physiology defined Stage IV patients which were mostly white, non-Hispanics. Genes comprising the composite gene expression score, TCR factor, may represent a blood-derived measure of T-cell activity and an indirect measure of active sarcoidosis inflammation. Validation of this measure could translate into individualized treatment for sarcoidosis patients.
Background: Interferon-gamma (IFN-γ) is a key mediator of sarcoidosis-related granulomatous inflammation. Previous findings of IFN-γ-producing Th17 cells in bronchoalveolar lavage fluid from sarcoidosis patients invokes the transition of Th17.0 cells to Th17.1 cells in the disease's pathogenesis. Since the T-bet transcription factor is crucial for this transition, the goal of this study was to determine if T-bet expression in Th17.0 cells reflects the extent of granulomatous inflammation in sarcoidosis patients as assessed by clinical outcomes. Methods: Using a case-control study design, we identified two groups of sarcoidosis subjects (total N = 43) with pulmonary function tests (PFTs) that either (1) changed (increased or decreased) longitudinally or (2) were stable. We used flow cytometry to measure the transcription factors T-bet and RORγt in Th1, Th17.0, and Th17.1 cell subsets defined by CCR6, CCR4 and CXCR3 in blood samples. We compared the percentages of T-bet + cells in RORγt + Th17.0 cells (defined as CCR6 + CCR4 + CXCR3 −) based on subjects' PFT group. We also assessed the relationship between the direction of change in PFTs with the changes in %T-bet + frequencies using mixed effects modeling. Results: We found that T-bet expression in subjects' RORγt + Th17.0 cells varied based on clinical outcome. The T-bet + percentage of RORγt + Th17.0 cells was higher in the cases (subject group with PFT changes) as compared to controls (stable group) (27 vs. 16%, p = 0.0040). In comparisons before and after subjects' PFT changes, the T-bet + frequency of RORγt + Th17.0 cells increased or decreased in the opposite direction of the PFT change. The percentage of these T-bet + cells was also higher in those with greater numbers of involved organs. Serum levels of interferon-γ-induced chemokines, CXCL9, CXCL10, and CXCL11, and whole blood gene expression of IFN-γ-related genes including GBP1, TAP1, and JAK2 were independently positively associated with the T-bet + frequencies of RORγt + Th17.0 cells. Conclusions: These data suggest that expression of T-bet in Th17.0 cells could reflect the extent of granulomatous inflammation in sarcoidosis patients because they represent a transition state leading to the Th17.1 cell phenotype. These findings indicate that Th17 plasticity may be part of the disease paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.