Nanoporous and nonporous three-dimensional silicon nanowire arrays (SiNWAs) prepared with metal-assisted chemical etching method were investigated as photocatalysts in dye photodegradation systematically. In comparison with nonporous SiNWAs, nanoporous SiNWAs have higher surface area, larger pore volume, stronger light absorption and better photocatalytic activity. After the HF-treatment, the photocatalytic activity of all kinds of SiNWAs increased significantly and the nanoporous SiNWAs showed excellent stability. The photocatalytic activity of different types of SiNWAs with hydrogen surface termination can be recovered by HF treatment. This study also reveal that the hydrogen terminated surfaces on silicon nanowires (SiNWs) enhance the performance of SiNWAs by increasing their photocatalytic activity.
It was demonstrated that zeolite can be used as a pseudo-template to grow very fine and uniform silicon nanostructures via disproportionation reaction of SiO by thermal evaporation. Three distinct types of composite nanowires and nanotubes of silicon and silica were grown on the surfaces of zeolite Y pellets. The first type is formed by an ultrafine crystalline silicon nanowire sheathed by an amorphous silica tube (a silicon nanowire inside a silica nanotube). The second type is formed by a crystalline silicon nanotube filled with amorphous silica (a silicon nanotube outside a silica nanowire). The third type is a biaxial silicon-silica nanowire structure with side-by-side growth of crystalline silicon and amorphous silica. These silicon nanostructures exhibit unusually intense photoluminescence (in comparison to ordinary silicon nanowires).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.