A novel laser based technique for waveform probing of integrated circuits is presented. This new technique exploits polarization-dependent opto-electronic effects in silicon integrated circuits to give phase sensitivity via a simple common-path interferometer design. The system utilizes a 10 ps pulse-width mode-locked laser to generate equivalent-time sampling pulses. A custom wavelength-tunable and spectrally matched external-cavity laser diode source is used for noise cancellation. A 20-GHz intrinsic system bandwidth with a 2x lower noise-floor, in comparison to current laser voltage probing technology, is shown.
Time-resolved photon emission (TRPE) results, obtained using a new superconducting, single-photon detector (SSPD) are reported. Detection efficiency (DE) for large area detectors has recently been improved by >100x without affecting SSPDs inherently low jitter (≈30 ps) and low dark-count rate (<30 s-1). TRPE measurements taken from a 0.13 μm geometry CMOS IC are presented. A single laser, time-differential probing scheme that is being investigated for next-generation laser voltage probing (LVP) is also discussed. This new scheme is designed to have shot-noise-limited performance, allowing signals as small as 100 parts-per-million (ppm) to be reliably measured.
For through-silicon optical probing of microprocessors, the heat generated by devices with power over 100W must be dissipated [1]. To accommodate optical probing, a seemingly elaborate cooling system that controls the microprocessor temperature from 60 to 100°C for device power up to 150 W was designed [2]. The system parameters to achieve the desired thermal debug environment were cooling air temperature and air flow. A mathematical model was developed to determine both device temperature and input power. The 3D heat equation that governs the temperature distribution was simplified to a case of a 1D rod with one end at the device center and the other at the cooling air intake. Thus the cooling system was reduced to an analytical expression. From experimental data, we computed all coefficients in the model, then ran extensive tests to verifythe accuracy was better than 10% over the entire temperature and power ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.