We use observations of a slow magnetohydrodynamic wave in the corona to determine for the first time the value of the effective adiabatic index, using data from the Extreme-ultraviolet Imaging Spectrometer on board Hinode. We detect oscillations in the electron density, using the CHIANTI atomic database to perform spectroscopy. From the time-dependent wave signals from multiple spectral lines the relationship between relative density and temperature perturbations is determined, which allows in turn to measure the effective adiabatic index to be γ eff = 1.10 ± 0.02. This confirms that the thermal conduction along the magnetic field is very efficient in the solar corona. The thermal conduction coefficient is measured from the phase lag between the temperature and density, and is shown to be compatible with Spitzer conductivity.
As the heliospheric current sheet (HCS) is corotating past STEREO-B, near-Earth spacecraft ACE, Wind and Cluster, and STEREO-A over more than three days between 2008 January 10 and 14, we observe various sections of (near-pressure-balanced) flux-rope-and magnetic-island-type plasmoids in the associated heliospheric plasma sheet (HPS). The plasmoids can qualify as slow interplanetary coronal mass ejections and are relatively low proton beta (<0.5) structures, with small length scales (an order of magnitude lower than typical magnetic cloud values) and low magnetic field strengths (2-8 nT). One of them, in particular, detected at STEREO-B, corresponds to the first reported evidence of a detached plasmoid in the HPS. The in situ signatures near Earth are associated with a long-decay X-ray flare and a slow small-scale streamer ejecta, observed remotely with white-light coronagraphs aboard STEREO-B and SOHO and tracked by triangulation. Before the arrival of the HPS, a coronal hole boundary layer (CHBL) is detected in situ. The multi-spacecraft observations indicate a CHBL stream corotating with the HCS but with a decreasing speed distribution suggestive of a localized or transient nature. While we may reasonably assume that an interaction between ejecta and CHBL provides the source of momentum for the slow ejecta's acceleration, the outstanding composition properties of the CHBL near Earth provide here circumstantial evidence that this interaction or possibly an earlier one, taking place during streamer swelling when the ejecta rises slowly, results in additional mixing processes.
Multiple current sheet crossings are ubiquitous features of the solar wind associated with high-beta plasma sheets, notably during the passage of the heliospheric current sheet (HCS). As the HCS is being convected past near-Earth, we attempt to resolve spatial scales and temporal variations of the apparent layered structure of the HCS, including adjacent large scale field reversals. We use several spacecraft for good spatial and cross-scale STEREO Results at Solar Minimum C. Foullon et al.coverage, spanning 550 R E across and 900 R E along the Sun -Earth line: STEREO, ACE and Cluster. The multi-spacecraft magnetic and plasma observations within the leading edge of the sector boundary are consistent with i) a broad multi-layered structure; ii) occasional non-planar structures and Alfvénic fluctuations; iii) various stages of transient outflowing loops formed by interchange reconnection. By comparison of the observations at each spacecraft, we obtain a synthesis of the evolution between the patterns of loops, and hence of the transient outflow evolution along the sector boundary. In particular, we present circumstantial evidence that a heat flux dropout, traditionally signalling disconnection, can arise from interchange reconnection and scattering. Moreover, the inter-spacecraft comparison eliminates ambiguities between interpretations of electron counterstreaming. Overall, the sector boundary layer remains, locally, a steady structure as it is convected in the solar wind across a radial heliospheric distance of 560 -580 R E . However, non-planar structures on the Cluster spatial scale, as well as the variations in angular changes and transition durations on the broader scale, indicate that we are not following the evolution of single loops but more likely a bunch of loops with variable properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.