Heart rate variability (HRV) depends on various reflexes, including the baroreflex or respiratory reflex. Experimental studies have suggested that the sinoatrial node density in G protein-linked receptors may be involved. Transgenic mice, with a specific eightfold atrial overexpression of human beta 1-adrenoceptor (beta 1-AR), have been generated to evaluate the role of the atrial beta 1-AR density on HRV. The heart rate was monitored using telemetry, and the signal was analyzed using a quantitative time-frequency domain analysis, the smoothed pseudo-Wigner-Ville method, and phase portrait maps. 1) Heart rate was unchanged, but the two normal components of HRV were decreased in transgenic mice. Transgenic mice have an unshortened life span and no arrhythmias. 2) Challenge of the animals by propranolol showed no modulation of the HRV in transgenic mice compared with controls. 3) In isolated atrial strips from transgenic mice, basal contractility was increased and there was no isoproterenol-induced inotropic effect. 4) The basal level of adenosine 3',5'-cyclic monophosphate production was lowered in transgenic mice, suggesting a shift in adenylate cyclase isoforms.
To complete traditional time-and frequency-domain analyses, new methods derived from non-linear systems analysis have recently been developed for time series studies. A panel of the most widely used methods of heart rate analysis is given with computations on mouse data, before and after a single atropine injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.