Summary Benzoporphyrin derivative monoacid (BPD-MA) photosensitization was examined for its effects on cellular adhesion of a human ovarian cancer cell line, OVCAR 3, to extracellular matrix (ECM) components. Mild BPD-MA photosensitization (~ 85% cell survival) of OVCAR 3 transiently decreased adhesion to collagen IV, fibronectin, laminin and vitronectin to a greater extent than could be attributed to cell death. The loss in adhesiveness was accompanied by a loss of β 1 integrin-containing focal adhesion plaques (FAPs), although β 1 subunits were still recognized by monoclonal antibody directed against human β 1 subunits. In vivo BPD-MA photosensitization decreased OVCAR 3 adhesiveness as well. Photosensitized adhesion was reduced in the presence of sodium azide and enhanced in deuterium oxide, suggesting mediation by singlet oxygen. Co-localization studies of BPD-MA and Rhodamine 123 showed that the photosensitizer was largely mitochondrial, but also exhibited extramitochondrial, intracellullar, diffuse cytosolic fluorescence. Taken together, these data show that intracellular damage mediated by BPD-PDT remote from the FAP site can affect cellular-ECM interactions and result in loss of FAP formation. This may have an impact on long-term effects of photodynamic therapy. The topic merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.