Measurements of midrapidity charged particle multiplicity distributions, dN ch /dη, and midrapidity transverse-energy distributions, dET /dη, are presented for a variety of collision systems and energies. Included are distributions for Au+Au collisions at For all A+A collisions down to √ s N N = 7.7 GeV, it is observed that the midrapidity data are better described by scaling withNqp than scaling with Npart. Also presented are estimates of the Bjorken energy density, εBJ, and the ratio of dET /dη to dN ch /dη, the latter of which is seen to be constant as a function of centrality for all systems.
Lucas, Richard, Moghaddam, M., Cronin, N., (2004) 'Microwave scattering from mixed-species forests, Queensland, Australia', IEEE Transactions on Geoscience and Remote Sensing 42(10) pp.2142-2159 RAE2008The potential of synthetic aperture radar (SAR) data for retrieving the above-ground and component (e.g., branch, trunk) biomass of mixed-species forests (including woodlands) typical to subtropical Queensland, Australia, was evaluated using a wave scattering model based on that of Durden et al. (1989). The model was parameterized using field data collected for nine forest types, which were selected through combined analysis of 1 : 4000 aerial photographs and light detection and ranging data. The simulated SAR backscatter data demonstrated a good correspondence at most frequencies and polarizations with Airborne SAR data. Analysis of scattering mechanisms revealed dominance of C-band horizontal-vertical (HV) volume scattering and increases with small-branch/foliage biomass, dominance of L- and P-band HH trunk-ground scattering and increases with trunk biomass, and dominance of L-band HV volume (branch) scattering and increases with large-branch biomass. The study concluded that above-ground biomass estimated using empirical relationships with selected SAR channels will be more reliable for forests of similar structural form due to dominance of microwave interaction with particular biomass components and the strength and consistency of relationships between these and the affiliated components that represent the total. In mixed-species forests, retrieval will be compromised by interaction with a greater diversity of structures and variability in relationships between structural components. Although empirical relationships with selected combinations of channels (e.g., L-band HH/HV) might allow retrieval of component and total biomass of forests containing trees of similar form (e.g., as mapped using Landsat sensor data), the use of SAR inversion models was considered a more appropriate route for retrieving the biomass of forests containing a mix of structural forms.Peer reviewe
We present the first measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow v2 in high-multiplicity p+Au collisions at √ s N N = 200 GeV. A comparison of these results with previous measurements in high-multiplicity d+Au and 3 He+Au collisions demonstrates a relation between v2 and the initial collision eccentricity ε2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin 3 and reflect the initial geometry. Good agreement is observed between the measured v2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.