This study investigates the influence of base oil type and viscosity on the frictional behaviour of lithiumthickened bearing greases. A series of model lithium greases were manufactured by systematically varying viscosity and type of base oil, so that the influence of a single base oil property could be studied in isolation. In addition, selected greases were blended with oleic acid, with the purpose of evaluating its effectiveness in further reducing grease friction. Friction coefficient and film thickness were measured in laboratory ball-on-disc tribometers over a range of speeds and temperatures. For a specific oil type, the influence of base oil viscosity on friction was found to be closely related to its effect on film thickness: greases formulated with PAO oils covering a wide range of viscosities gave very similar friction at the same nominal film thickness. For a given base oil viscosity, base oil type was found to have a strong influence on grease friction under all test conditions. PAO-based greases generally produced lower friction than mineral-and ester-based greases. Addition of oleic acid to the test greases did not significantly affect friction within the range of test conditions employed in this study. The results provide new insight into the frictional behaviour of greases, which may be used to help inform new low-friction grease formulations for rolling bearing applications.
This article evaluates the frictional performance of different bearing grease formulations in full rolling bearings and a ball-on-disc rig and subsequently assesses whether the ball-on-disc test results can be used to predict the grease performance in actual bearings. A selection of custom-made greases with systematically varied formulations as well as their base oils were tested. Bearing torque was measured in two different cylindrical roller thrust bearings and a thrust ball bearing. The same lubricants were tested with ball-on-disc tribometers, a mini traction machine (MTM) to measure friction and an optical elastohydrodynamic (EHD) rig to measure film thickness. Both lithium complex and diurea greases were observed to produce lower friction than their base oils within the low speed, low nominal lambda ratio region, whereas the greases and oils had the same friction at high nominal lambda ratio values. These relative trends were the same in full bearing and single-contact MTM tests. The reduction in friction was seen to be related to the level of film thickness enhancement provided by greases at lower speeds, which leads to an increase in the effective lambda ratio and hence reduced friction. By extracting the sliding torque component from the overall measured bearing torque, a plot of the friction coefficient against the effective lambda ratio was produced encompassing all bearing and single-contact tests and all lubricants and test conditions. This plot was seen to follow a general shape of a master Stribeck curve, indicating that the numerical values of the friction coefficient from ball-on-disc and full bearing tests overlap and can be related to each other using this approach over the range of conditions employed here. Thus, single-contact ball-on-disc tests can provide a fast and economical way of establishing the frictional performance of bearing greases in full bearings in terms of both relative performance rankings and quantitative values of bearing frictional power losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.