This study presents indoor/outdoor PM2.5 and PM10 concentrations measured during winter and summer in 15 homes in Kocaeli, which is one of the most industrialized areas in Turkey. Indoor and outdoor PM2.5 and PM10 mass concentrations and elemental composition were determined using an X-ray fluorescence spectrometer. Quantitative information was obtained on mass concentrations and other characteristics such as seasonal variation, indoor/outdoor (I/O) ratio, PM2.5/PM10 ratio, correlations and sources. Average indoor and outdoor PM2.5 concentrations were 29.8 and 23.5 microg/m(3) for the summer period, and 24.4 and 21.8 microg/m(3) for the winter period, respectively. Average indoor and outdoor PM10 concentrations were 45.5 and 59.9 microg/m(3) for the summer period, and 56.9 and 102.3 microg/m(3) for the winter period, respectively. A varimax rotated factor analysis (FA) was performed separately on indoor and outdoor datasets in an effort to identify possible heavy metal sources of PM2.5 and PM10 particle fractions. FA of outdoor data produced source categories comprising polluted soil, industry, motor vehicles, and fossil fuel combustion for both PM fractions, while source categories determined for indoor data for both PM2.5 and PM10 comprised industry, polluted soil, motor vehicles, and smoking, with an additional source category of cooking activities detected for the PM2.5 fraction. Practical Implications In buildings close to industrial areas or traffic arteries, outdoor sources may have an important effect on indoor air pollution. Therefore, indoor and outdoor investigations should be conducted simultaneously to assess the relationship between indoor and outdoor pollution. This study presents the simultaneous measurement of PM fractions (PM2.5 and PM10) and their elemental compositions to determine the sources of respirable PM and the heavy metals bound to these particles in indoor air. Factor analysis of indoor data indicated that the contribution of outdoor pollutant sources to indoor pollution was about 70%, making these sources the most significant for indoor heavy metal pollution, wheras other sources of indoor pollution included smoking and cooking activities.
Trace element levels in hair of individuals living in urban areas were determined by energy dispersive XRF. Two groups of subjects were investigated, the first group was assumed to be from a healthy environment, the other one was exposed to a high level of contamination due to working conditions. The results were compared to data reported in the literature. The concentrations of Ca, Fe, Cu, Zn and Pb in the scalp hair were determined and the correlation between hair trace element levels and environmental effects was discussed. The results given by the second group show that environmental exposure effects hair trace element levels which are related to body trace element concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.