Magnetic fields measured by Voyager 1 (V1) show that the spacecraft crossed the boundary of an unexpected region five times between days 210 and ~238 in 2012. The magnetic field strength B increased across this boundary from ≈0.2 to ≈0.4 nanotesla, and B remained near 0.4 nanotesla until at least day 270, 2012. The strong magnetic fields were associated with unusually low counting rates of >0.5 mega-electron volt per nuclear particle. The direction of B did not change significantly across any of the five boundary crossings; it was very uniform and very close to the spiral magnetic field direction, which was observed throughout the heliosheath. The observations indicate that V1 entered a region of the heliosheath (the heliosheath depletion region), rather than the interstellar medium.
We present in situ observations of magnetic turbulence in the draped interstellar magnetic field
measured by Voyager 1 during an undisturbed interval from 2015.3987 to 2016.6759 confirming the existence of the turbulence observed previously from 2013.3593 to 2014.6373. The power spectral density of the turbulence was the same in both cases. The turbulence had a Kolmogorov k
−5/3 spectrum in the range from k = 1.3 × 10−13 cm−1 to 4 × 10−12 cm−1. The ratio of the turbulent fluctuations to the average magnetic field strength was only 0.02, indicating that the turbulence was very weak. Extrapolating the power-law slope to lower frequencies yields an upper limit on the turbulence outer scale of 0.01 pc = 2000 au, which may be regarded as the distance at which Voyager 1 will enter the undisturbed local interstellar medium, beyond the outer heliosheath or bow wave in the upstream direction. The maximum variance of the fluctuations was in the two directions transverse to the average magnetic field in the recent interval, whereas it was parallel to the average magnetic field in the earlier interval, suggesting a transformation from turbulence with a dominant compressive component to turbulence dominated by transverse fluctuations. As the magnitude of the fluctuations was approaching that of the uncertainties of the measurements, the latter result requires confirmation by further observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.