The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on SolarProbe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.
[1] On the basis of a recently developed nonlinear guiding center theory for the perpendicular spatial diffusion coefficient k ? used to describe the transport of energetic particles, we construct a model for diffusive particle acceleration at highly perpendicular shocks, i.e., shocks whose upstream magnetic field is almost orthogonal to the shock normal. We use k ? to investigate energetic particle anisotropy and injection energy at shocks of all obliquities, finding that at 1 AU, for example, parallel and perpendicular shocks can inject protons with equal facility. It is only at highly perpendicular shocks that very high injection energies are necessary. Similar results hold for the termination shock. Furthermore, the inclusion of self-consistent wave excitation at quasiparallel shocks in evaluating the particle acceleration timescale ensures that it is significantly smaller than that for highly perpendicular shocks at low to intermediate energies and comparable at high energies. Thus higher proton energies are achieved at quasiparallel rather than highly perpendicular interplanetary shocks within 1 AU. However, both injection energy and the acceleration timescale at highly perpendicular shocks are sensitive to assumptions about the ratio of the two-dimensional (2-D) correlation length scale to the slab correlation length scale l 2D /l k . Model proton spectra and intensity profiles accelerated by a highly perpendicular interplanetary shock are compared to an identical but parallel interplanetary shock, revealing important distinctions. Finally, we present observations of highly perpendicular interplanetary shocks that show that the absence of upstream wave activity does not inhibit particle acceleration at a perpendicular shock. The accelerated particle distributions closely resemble those expected of diffusive shock acceleration, and observed at oblique shocks, an example of which is shown.
By the end of 2008 (approximately one year, at the time of writing), the NASA SMall EXplorer (SMEX) mission IBEX (Interstellar Boundary Explorer) will begin to return data on the flux of energetic neutral atoms (ENA's) observed from an eccentric Earth orbit. This data will provide information about the inner heliosheath (the region of post-shock solar wind) where ENA's are born through charge-exchange between interstellar neutral atoms and plasma protons. However, the observed flux will be a function of the heliosheath thickness, the shape of the proton distribution function, the bulk plasma flow, and loss mechanisms acting on ENA's traveling to the detector. As such, ENA fluxes obtained by IBEX can be used to better parametrize global models which can then provide improved quantitative data on the shape and plasma characteristics of the heliosphere. In a recent letter , we explored the relationship between various geometries of the global heliosphere and the corresponding ENA all-sky maps. There we concentrated on energies close to the thermal core of the heliosheath distribution (200 eV), which allowed us to assume a simple Maxwellian profile for heliosheath protons. In this paper we investigate ENA fluxes at higher energies (IBEX detects ENA's up to 6 keV), by assuming that the heliosheath
At present, the heliosphere is embedded in a warm low density interstellar cloud that belongs to a cloud system flowing through the local standard of rest with a velocity near ~18 km/s. The velocity structure of the nearest interstellar material (ISM), combined with theoretical models of the local interstellar cloud (LIC), suggest that the Sun passes through cloudlets on timescales of < 10^3 - 10^4 yr, so the heliosphere has been, and will be, exposed to different interstellar environments over time. By means of a multi-fluid model that treats plasma and neutral hydrogen self-consistently, the interaction of the solar wind with a variety of partially ionized ISM is investigated, with the focus on low density cloudlets such as are currently near the Sun. Under the assumption that the basic solar wind parameters remain/were as they are today, a range of ISM parameters (from cold neutral to hot ionized, with various densities and velocities) is considered. In response to different interstellar boundary conditions, the heliospheric size and structure change, as does the abundance of interstellar and secondary neutrals in the inner heliosphere, and the cosmic ray level in the vicinity of Earth. Some empirical relations between interstellar parameters and heliospheric boundary locations, as well as neutral densities, are extracted from the models.Comment: 24 pages, 9 figures, 2 table
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.