This work is to reveal the novel technique of liquid phase deposition silicon dioxide (SiO2) films which will increase the deposition rate and also improve the film quality. It is well known that deposition at a lower temperature without residual OH− on the substrate is difficult to achieve. Therefore, it is important to treat the substrate wafer before deposition. The substrate surface dipped into hydrofluoric acid (HF) is usually terminated with hydrogen (H) and has hydrides (Si–H) which react with water so that hydroxyls (Si–OH) can be obtained. No silicon dioxide can be grown on a clean Si substrate without native oxide. Therefore, a model is proposed to show that native oxide growth with chemical pretreatment of HF and ultrapure deionized water has rich hydroxyl (OH) molecules on surface in order to grow silicon dioxide. Another constant parameter, the growth rate of SiO2 is found to increase linearly with the time of reaction with ultrapure deionized water. At the same concentration of boric acid and hydrofluosilicic acid, the corresponding deposition rate of SiO2 is found to be about 70 Å/h larger than the films which are grown without reacting with chemical pretreatment of HF and ultrapure deionized water. In this study, the refractive index and deposition rate are found to be as high as 1.47 and 1400 Å/h, respectively. Good and reliable quality SiO2 film grown in this work was supported by various analytical techniques, such as Fourier transform infrared, Auger electron spectroscopy, refractive index measurement, etching rate measurement, and leakage current measurement.
A low temperature (35–45 °C) process of liquid phase deposition (LPD) for the growth of silicon dioxide (SiO2) on Hg1−xCdxTe is proposed. To enhance the formation of SiO2, the HgCdTe surface has to be treated by ammonia solution before LPD. A thin native oxide which is formed by previous surface treatment involving OH− radicals greatly enhances the SiO2 deposition on HgCdTe. Thus, SiO2 films with a high refractive index (1.465) and a low p-etching rate (34 Å/s) were obtained. Auger electron spectroscopy depth profile shows less interdiffusion of constituent atoms between the SiO2 layer and the HgCdTe substrate. Electrical properties of the SiO2/p-HgCdTe interface are also characterized at 77 K. It is found that the p-HgCdTe surface is accumulated and the effective surface charge density is estimated to be −2.25×1010 cm−2. The leakage current and dielectric breakdown strength are also found to be 0.356 nA (at −5 V) and above 650 KV/cm, respectively. Furthermore, the growth mechanism of LPD-SiO2 on HgCdTe is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.