It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key rôle in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause fragmentation of the discs, thereby triggering the formation of additional stars.We have carried out a series of simulations of disc-star interactions using an SPH code which treats self-gravity, hydrodynamic and viscous forces. We find that interactions between discs and stars provide a mechanism for removing energy from, or adding energy to, the orbits of the stars, and for truncating the discs. However, capture during such encounters is unlikely to be an important binary formation mechanism.A more significant consequence of such encounters is that they can trigger fragmentation of the disc, via tidally and compressionally induced gravitational instabilities, leading to the formation of additional stars. When the disc-spins and stellar orbits are randomly oriented, encounters lead to the formation of new companions to the original star in 20% of encounters. If most encounters are prograde and coplanar, as suggested by simulations of dynamically-triggered star formation, then new companions are formed in approximately 50% of encounters.
Abstract. -Smoothed particle hydrodynamics (SPH) is a particle method for modelling hydrodynamical flows that has been successfully applied to a wide range of astrophysical problems. One of its main weaknesses, however, has been its inability to treat viscosity in a rigorous manner. We present a new method that can be used to solve the Navier-Stokes equation for an arbitrary viscosity. We compare the accuracy of the method to alternative methods for treating viscosity in SPH, and apply the method to a series of tests for which there exist analytic solutions. We find that the new method is significantly more accurate than other existing methods, computationally efficient, and that the results of simulations carried out using the method are in excellent agreement with the theory.
A Lagrangian, particle-based numerical method (tree code gravity plus smoothed particle hydrodynamics) was used to simulate clump-clump collisions occurring within GMCs. The collisions formed shock-compressed layers, out of which condensed approximately co-planar protostellar discs of 7-60 solar masses and 500-1000AU radius. Binary and multiple systems were the usual final state. Lower mass objects were also produced, but commonly underwent disruption or merger. Such objects occasionally survived by being ejected via a three-body slingshot event resulting from an encounter with a binary system. Varying the impact parameter, b, altered the processes by which the protostellar systems formed. At low b a single central disc formed initially, and was then spun-up by an accretion flow, causing it to produce secondaries via rotational instabilities. At mid b the shocked layer w hich formed initially broke up into fragments, and discs were then formed via fragment merger. At large b single objects formed within the compressed leading edge of each clump. These became unbound from each other as b was increased further. The effect of changing numerical factors was examined by : (i) colliding clumps which had been re-oriented before the collision (thus altering the initial particle noise), and (ii) by quadrupling the number of particles in each clump (thus increasing the resolution of the simulation). Both changes were found to affect the small-scale details of a collision, but leave the large scale morphology largely unaltered. It was concluded that clump-clump collisions provide a natural mechanism by which multiple protostellar systems may form.Comment: 15 pages, 12 low resolution figures in 50 files, accepted by MNRA
We suggest that the abrupt switch, from hierarchical clustering on scales ≳ 0.04 pc, to binary (and occasionally higher multiple) systems on smaller scales, which Larson has deduced from his analysis of the grouping of pre‐main‐sequence stars in Taurus, arises because pre‐protostellar gas becomes thermally coupled to dust at sufficiently high densities. The resulting change — from gas cooling by molecular lines at low densities to gas cooling by dust at high densities — enables the matter to radiate much more efficiently, and hence to undergo dynamical fragmentation. We derive the domain in which gas cooling by dust facilitates dynamical fragmentation. Low‐mass (∼ M⊙) clumps — those supported mainly by thermal pressure — can probably access this domain spontaneously, albeit rather quasi‐statically, provided that they exist in a region in which external perturbations are few and far between. More massive clumps probably require an impulsive external perturbation, for instance a supersonic collision with another clump, in order for the gas to reach sufficiently high density to couple thermally to the dust. Impulsive external perturbations should promote fragmentation, by generating highly non‐linear substructures which can then be amplified by gravity during the subsequent collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.