Purpose:Isometric exercise training (IET) reduces resting blood pressure (BP). Most previous protocols impose exercise barriers which undermine its effectiveness as a potential physical therapy for altering BP. An inexpensive, home-based programme would promote IET as a valuable tool in the fight against hypertension. The aims of this study were: (a) to investigate whether home-based wall squat training could successfully reduce resting BP, and (b) to explore the physiological variables that might mediate a change in resting BP. Methods:Twenty-eight healthy normotensive males were randomly assigned to a control and a 4 week home-based IET intervention using a crossover design with a 4 week 'washout' period in-between. Wall squat training was completed 3x weekly over 4 weeks with 48 hours between sessions. Each session comprised 4x 2 minute bouts of wall squat exercise performed at a participant-specific knee joint angle relative to a target HR of 95% HRpeak, with 2 minutes rest between bouts. Resting heart rate, BP, cardiac output, total peripheral resistance and stroke volume were taken at baseline and post each condition. Results:Resting BP (systolic = -4 ± 5, diastolic = -3 ± 3 and mean arterial = -3 ± 3 mmHg), cardiac output (-0.54 ± 0.66) and heart rate (-5 ± 7 beats•min -1 ) were all reduced following IET, with no change in total peripheral resistance or stroke volume compared to the control. Conclusion:These findings suggest the wall squat provides an effective method for reducing resting BP in the home resulting primarily from a reduction in resting heart rate.
The isometric wall squat could be utilised in home-based training aimed at reducing resting blood pressure, but first its suitability must be established. The aim of this study was to determine a method of adjusting wall squat intensity and explore the cardiovascular responses. Twenty-three participants performed one 2 minute wall squat on 15 separate occasions. During the first ten visits, ten different knee joint angles were randomly completed from 135° to 90° in 5° increments; five random angles were repeated in subsequent visits. Heart rate and blood pressure (systolic, diastolic and mean arterial pressure) were measured. The heart rate and blood pressure parameters produced significant inverse relationships with joint angle (r at least -0.80; P < 0.05), demonstrating that wall squat intensity can be adjusted by manipulating knee joint angle. Furthermore, the wall squat elicited similar cardiovascular responses to other isometric exercise modes that have reduced resting blood pressure (135° heart rate: 76 ± 10 beats ∙ min(-1); systolic: 134 ± 14 mmHg; diastolic: 76 ± 6 mmHg and 90° heart rate: 119 ± 20 beats ∙ min(-1); systolic: 196 ± 18 mmHg; diastolic: 112 ± 13 mmHg). The wall squat may have a useful role to play in isometric training aimed at reducing resting blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.