We investigate the radiative B c → D s1 γ transition in the framework of QCD sum rules. In particular, we calculate the transition form factors responsible for this decay in both weak annihilation and electromagnetic penguin channels using the quark condensate, mixed and two-gluon condensate diagrams as well as propagation of the soft quark in the electromagnetic field as nonperturbative corrections. These form factors are then used to estimate the branching ratios of the channels under consideration. The total branching ratio of the B c → D s1 γ transition is obtained to be in order of 10 −5 , and the dominant contribution comes from the weak annihilation channel.
The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation, and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension in plasmas, and led to the internal dynamic electric fields in all inhomogeneous plasmas. The surface tension causes stabilization by short length surface wave smoothing the expanding plasma plume and to stabilization against the Rayleigh-Taylor instability. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature resulted in the first quantum theory of surface tension of metals in agreement with measurements. Taking the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well-known nuclear density, and the Debye lengths equal to the Hofstadter decay of the nuclear surface. Increasing the nuclear density by a factor of 10 leads to a change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark gluon plasma. Expansion of this higher density at the big bang or in super-nova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range, however with the limit to about uranium. A relation for the magic numbers leads to a quark structure of nuclear shells that can be understood as a duality property of nuclei with respect to nucleons and quarks
A new threefold symmetry is presented for derivation of the magic numbers of nuclei and compared with the model based on the Bollzmann distribution from the standard abundance distribution of nuclei in the universe in the endothermic branch. This results in a 3" relation leading to the motivation to explore the quark state in nuclei. But. this is in contrast (duality) to the fact that the confinement of nuclei by a generalized Debyc layer can be based only on a nucleón and not on a quark structure. This Debye model result led to a change of the Fermi energy of the nucléons into Ihe relativistic range at higher than nuclear density resulting in a mass-independent state at higher than nuclear densities for the quark state in neutron stars. This result and the 3"-relation motivated consideration of the quark state in nuclei. Success is reported here by quarklike statistics for nuclei reprtxJucing the magic numbers up to 126 identical with the Boltzmann nitxlel. But. for the next higher numher. the Boltzmann model definitely arrives at 180 while the new quarklike model leads to the number 184. The paradox may be solved by the very accurate measurements of a local Maruhn-Greiner maximum from low energy nuclear reactions.Résumé: Un modèle de symétrie d'ordre 3 est développé pour retrouver les nombres magiques des noyaux et les comparer avec le modèle basé sur la distribution de Boltzmann de l'Abondance de la Distribution Standard des noyaux de l'Univers de la branche endothermique. Ceci produit une relation en 3n conduisant à explorer les états des quarks dans les noyaux. Mais ceci est en dualité ^avec le fait que le confinement du noyau par une couche de Dehye généralisée peut être fondée ' seulement sur une structure en nucléon et non en quarks. Le résultat du modèle de Debye conduit à un changement de l'énergie de Fermi des nucléons dans la gamme relativiste dans des densités supérieures aux densités nucléaires dans un état indépendant de la mas.se dans des densités supérieures aux dens liés nucléaires pour les états des quarks dans les étoiles à neutron. Ce résultat et les relations 3n nous ont motivé à regarder les états des quarks dans les noyaux. Nous réussissons ici à montrer qu'une statistique en quark pour le noyau reproduit les nombres magiques jusqu'à 126 de façon identique à ce que fourni le modèle de Boltzmann. Mais pour les nombres magiques supérieurs, le modèle de Boltzmann conduit à 180, alors que le modèle en quark conduit à 184. Le paradoxe peut être résolu par des mesures précises du maximum local Maruhn-Greiner pour les réactions nucléaires basse énergie.
This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict the gold recovery and to simulate the effects of pH, solid percentage, NaCN concentration, particle size and leaching time during cyanidation process. Feedforward ANN with back-propagation learning algorithm with 5-9-1 arrangement was found capable to predict the recovery of Au from cyanide leaching solution. The results showed that simulated values obtained by the network were very close to the experimental results. The coefficient of determination value (R 2) was 0.9803 for training set, and in testing stage the R 2 value was 0.8213. On the contrary, the correlation coefficients were low for the results predicted by MLR method. R 2 values obtained 0.5561 and 0.6705 for training and testing data, respectively. The results obtained from this paper can be considered as an easy and cost-effective method to simulate the cyanide leaching process of gold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.